
Formal Design and Veri�cation of aReliable Computing Platform ForReal-Time ControlPhase 2 ResultsRicky W. ButlerBen L. Di VitoFebruary 27, 1992

Contents1 Introduction 11.1 Design of the Reliable Computing Platform : : : : : : : : : : : : : : : : : : 21.2 Overview of Results : 41.3 Previous E�orts : 62 Speci�cation Hierarchy and Veri�cation Approach 62.1 The State Machine Approach to Speci�cation : : : : : : : : : : : : : : : : : 62.2 Specifying Behavior in the Presence Of Faults : : : : : : : : : : : : : : : : : 72.3 The Speci�cation Hierarchy : 82.4 Extended State Machine Model : 102.5 The Proof Method : 113 US/RS Speci�cation 133.1 Preliminary De�nitions : 133.2 US Speci�cation : 143.3 RS Speci�cation : 143.4 Actuator Outputs : 173.5 Generic Fault-Tolerant Computing : 183.5.1 State Model for Transient Fault Recovery : : : : : : : : : : : : : : : : 183.5.2 Transient Recovery Axioms : 193.5.3 Sample Interpretations of Theory : 214 RS to US Proof 225 DS Speci�cation 246 DS to RS Proof 286.1 DS to RS Mapping : 296.2 The Proof : 307 DA Speci�cation 327.1 Clock Synchronization Theory : 337.2 The DA Formalization : 368 DA to DS Proof 428.1 DA to DS Mapping : 428.2 The Proof : 438.2.1 Decomposition Scheme : 438.2.2 Proof of com broadcast 2 : 449 Implementation Considerations 489.1 Restrictions Imposed by the DA Model : 489.2 Processor Scheduling : 499.3 Hardware Protection Features : 50i

9.4 Voting Mechanisms : 5110 Future Work 5210.1 Further Re�nement : 5210.2 Task Scheduling and Voting : 5410.3 Actuator Outputs : 5410.4 Development of a Detailed Reliability Model : : : : : : : : : : : : : : : : : : 5411 Concluding Remarks 54A Appendix | LaTEX-printed Speci�cation Listings 62B Appendix | LaTEX-printed Supplementary Speci�cation Listings 108C Appendix | Results of Proof Chain Analysis 115

ii

AbstractIn this paper the design and formal veri�cation of the Reliable Computing Plat-form (RCP), a fault-tolerant computing system for digital
ight control appli-cations, are presented. The RCP utilizes NMR-style redundancy to mask faultsand internal majority voting to
ush the e�ects of transient faults. The systemis formally speci�ed and veri�ed using the Ehdm veri�cation system. A majorgoal of this work is to provide the system with signi�cant capability to withstandthe e�ects of High Intensity Radiated Fields (HIRF).

1 IntroductionNASA is engaged in a major research e�ort towards the development of a practical validationand veri�cation methodology for digital
y-by-wire control systems.1 Researchers at NASALangley Research Center (LaRC) are exploring formal veri�cation as a candidate technologyfor the elimination of design errors in such systems. In previous reports [1, 2, 3], we putforward a high level architecture for a reliable computing platform (RCP) based on fault-tolerant computing principles. Central to this work is the use of formal methods for theveri�cation of a fault-tolerant operating system that schedules and executes the applicationtasks of a digital
ight control system. Phase 1 of this e�ort established results about thehigh level design of RCP. This report presents our Phase 2 results, which carry the design,speci�cation, and veri�cation of RCP to lower levels of abstraction.The major goal of this work is to produce a veri�ed real-time computing platform, bothhardware and operating system software, which is useful for a wide variety of control-systemapplications. Toward this goal, the operating system provides a user interface that \hides"the implementation details of the system such as the redundant processors, voting, clocksynchronization, etc. We adopt a very abstract model of real-time computation, introducethree levels of decomposition of the model towards a physical realization, and rigorouslyprove that the decomposition correctly implements the model. Speci�cations and proofshave been mechanized using the Ehdm veri�cation system [4].A major goal of the RCP design is to enable the system to recover from the e�ects oftransient faults. More than their analog predecessors, digital
ight control systems are vul-nerable to external phenomena that can temporarily a�ect the system without permanentlydamaging the physical hardware. External phenomena such as electromagnetic interference(EMI) can
ip the bits in a processor's memory or temporarily a�ect an ALU. EMI cancome from many sources such as cosmic radiation, lightning or High Intensity RadiatedFields (HIRF). There is growing concern over the e�ects of HIRF on
ight control systems.In the FAA Digital Systems Validation Handbook { volume II [5], we �nd:A number of European military aircraft fatal accidents have been attributed toHigh Energy Radio Frequency (HERF).2 A digital
y-by-wire military Tornadoaircraft and crew were lost during a tactical training stra�ng attack in Germany.The loss was attributed to HERF when the aircraft
ew through a high intensityRadio Frequency (RF) �eld. The civil/military aviation industry has very limitedexperience or data directed to accidents caused by electromagnetic transientsand/or radiation. The present criteria, speci�cations, and procedures are beingreevaluated. The HERF �elds apparently upset the digital
ight control systemof the Tornado which was quali�ed to a very low electromagnetic Environment(EME) standard.While composite materials may o�er signi�cant advantages in strength, weight,and cost, they provide less electromagnetic shielding than aluminum. The use1In
y-by-wire aircraft the direct mechanical and hydraulic linkages between the pilot and actuators ofthe system are replaced with digital computers. These digital computers are being used to control life criticalfunctions such as the engines, sensors, fuel systems and actuators.2The term HERF has largely been replaced in current usage by the newer term HIRF.1

of solid-state digital technology in
ight-critical systems create major challengesto prevent transient susceptibility and upset in both civil and military aircraft.Therefore, the Civil Aviation Authority (CAA), United Kingdom (U.K.) andthe Federal Aviation Administration (FAA), United States (U.S.) voiced concernrelative to emerging technology aircraft and systems.The RCP system is designed to automatically
ush the e�ects of transients periodically, aslong as the e�ect of a transient is not massive, that is, simultaneously a�ecting a majorityof the redundant processors in the system.3 Of course, there is no hope of recovery if thesystem designed to overcome transient faults contains a design
aw. Consequently, a majoremphasis in this work has been the development of techniques that mathematically showwhen the desired recovery properties have been achieved. The advantages of this approachare signi�cant:� Con�dence in the system does not rely primarily on end-to-end testing, which cannever establish the absence of some rare design
aw (yet more frequent than 10�9 [6])that can crash the system [7].� Minimizes the need for experimental analysis of the e�ects of EMI or HIRF on a digitalprocessor. The probability of occurrence of a transient fault must be experimentallydetermined, but it is not necessary to obtain detailed information about how a transientfault propagates errors in a digital processor.� The role of experimentation is determined by the assumptions of the mathematicalveri�cation. The testing of the system can be concentrated at the regions where thedesign proofs interface with the physical implementation.1.1 Design of the Reliable Computing PlatformTraditionally, the operating system function in
ight control systems has been implementedas an executive (or main program) that invokes subroutines implementing the applicationtasks. For ultra-reliable systems, the additional responsibility of providing fault toleranceand undergoing validation makes this approach questionable. We propose a well-de�nedoperating system that provides the applications software developer a reliable mechanism fordispatching periodic tasks on a fault-tolerant computing base that appears to him as a singleultra-reliable processor.Our system design objective is to minimize the amount of experimental testing requiredand maximize our ability to reason mathematically about correctness. The following designdecisions have been made toward that end:� the system is non-recon�gurable� the system is frame-synchronous� the scheduling is static, non-preemptive� internal voting is used to recover the state of a processor a�ected by a transient fault3Future work will concentrate on the massive transient and techniques to detect and restart a massivelyupset system. 2

Uniprocessor System Model (US)jFault-tolerant Replicated Synchronous Model (RS)jFault-tolerant Distributed Synchronous Model (DS)jFault-tolerant Distributed Asynchronous Model (DA)jHardware/Software ImplementationFigure 1: Hierarchical Speci�cation of the Reliable Computing Platform.A four-level hierarchical decomposition of the reliable computing platform is shown in �g-ure 1.The top level of the hierarchy describes the operating system as a function that sequen-tially invokes application tasks. This view of the operating system will be referred to as theuniprocessor model, which is formalized as a state transition system in section 3.2 and formsthe basis of the speci�cation for the RCP.Fault tolerance is achieved by voting results computed by the replicated processors op-erating on the same inputs. Interactive consistency checks on sensor inputs and voting ofactuator outputs require synchronization of the replicated processors. The second level inthe hierarchy describes the operating system as a synchronous system where each replicatedprocessor executes the same application tasks. The existence of a global time base, an in-teractive consistency mechanism and a reliable voting mechanism are assumed at this level.The formal details of the model, speci�ed as a state transition system, are described insection 3.3.Although not anticipated during the Phase 1 e�ort, another layer of re�nement was in-serted before the introduction of asynchrony. Level 3 of the hierarchy breaks a frame intofour sequential phases. This allows a more explicit modeling of interprocessor communicationand the time phasing of computation, communication, and voting. The use of this interme-diate model avoids introducing these issues along with those of real time, thus preventingan overload of details in the proof process.At the fourth level, the assumptions of the synchronous model must be discharged.Rushby and von Henke [8] report on the formal veri�cation of Lamport and Melliar-Smith's[9] interactive-convergence clock synchronization algorithm. This algorithm can serve as afoundation for the implementation of the replicated system as a collection of asynchronouslyoperating processors. Dedicated hardware implementations of the clock synchronizationfunction are a long-term goal.Final realization of the reliable computing platform is the subject of the Phase 3 e�ort.The research activity will culminate in a detailed design and prototype implementation.3

. . . ??
?Interactive ConsistencyDistribution Network. . .InterprocessorCommunication LinkInterprocessorCommunication Link ProcessorReplicateRProcessorReplicate1 Actuators

Sensors

Figure 2: Generic hardware architecture.Figure 2 depicts the generic hardware architecture assumed for implementing the replicatedsystem. Single-source sensor inputs are distributed by special purpose hardware executinga Byzantine agreement algorithm. Replicated actuator outputs are all delivered in parallelto the actuators, where force-sum voting occurs. Interprocessor communication links allowreplicated processors to exchange and vote on the results of task computations. As previouslysuggested, clock synchronization hardware may be added to the architecture as well.1.2 Overview of ResultsBefore presenting the complete details, we provide an overview of the major formalizationsand results for the reliable computing platform. In accordance with accepted terminology,we consider a fault to be a condition in which a piece of hardware is not operating withinits speci�cations due to physical malfunction, and an error to be an incorrect computationresult or system output. When a fault occurs, errors may or may not be produced. Althoughfault-tolerant architectures o�er a high degree of immunity from hardware faults, there is alimit to how many simultaneous faults can be tolerated. Unless this limit is exceeded duringsystem operation, the system will mask the occurrence of errors so that the system as awhole produces no computation errors. If the limit is exceeded, however, the system mightproduce erroneous results. 4

The primary mechanism for tolerating faults is voting of redundant computation results.Voting can take place at a number of locations in the system and associated with each choiceare various tradeo�s. If voting occurs only at the actuators and the internal state of thesystem (contained in volatilememory) is never subjected to a vote, a single transient fault canpermanently corrupt the state of a good processor. This is an unacceptable approach since�eld data indicates that transient faults are signi�cantly more likely than permanent faults[10]. An alternative voting strategy is to vote the entire system state at frequent intervals.This approach quickly purges the e�ects of transient faults from the system; however, thecomputational overhead for this approach may be prohibitive. There is a trade-o� betweenthe rate of recovery from transient faults and the frequency of voting. The more frequent thevoting, the faster the recovery from transients, but at the price of increased computationaloverhead. We observe that voting need only occur for a system state that is not recoverablefrom sensor inputs. A sparse voting approach can accomplish recovery from the e�ects oftransient faults at greatly reduced overhead, but involves increased design complexity. Theformal models presented here provide an abstract characterization of the voting requirementsfor a fault-tolerant system that purges the e�ects of transient faults.The proofs we construct are implicitly conditional to account for the situation of limitedfault tolerance. The main results we establish can be expressed by the following formula:W (r1; . . . ; rn) � s = V (r1; . . . ; rn)where W is a predicate to de�ne a minimal working hardware subset over time, s is theuniprocessor model's system results, r1; . . . ; rn are the results of the replicated processors, andV is a function that selects the properly voted values at each step. Moreover, asynchronousoperation is assumed at the lowest speci�cation layer. In this case, we further establish thatif the minimal working hardware includes an adequate number of nonfaulty clocks, and clocksynchronization is maintained, then the voted outputs continue to match those of higher levelspeci�cations. Thus, as long as the system hardware does not experience an unusually heavyburst of component faults, the proof establishes that no erroneous operation will occur atthe system level. Individual replicates may produce errors, but they will be out-voted byreplicates producing correct results.If the condition W were true 100% of the time, the system would never fail. Unfortu-nately, real devices are imperfect and this cannot be achieved in practice. The design ofthe fault-tolerant architecture must ensure that condition W holds with high probability;typically, the goal is P (W) � 1 � 10�9 for a 10 hour mission. This condition provides avital connection between the reliability model and the formal correctness proofs. The proofsconditionally establish that system output is not erroneous as long as W holds, and thereliability model predicts that W will hold with adequately high probability.In the formal development to follow, we model the possible occurrence of componenthardware faults and the unknown nature of computation results produced under such condi-tions. It is important to note that this modeling is for speci�cation purposes only and re
ectsno self-cognizance on the part of the running system. We assume a nonrecon�gurable archi-tecture that is capable of masking the e�ects of faults, but makes no attempt to detect ordiagnose those faults. Each replicate is computing independently and continues to operatethe best it can under faulty conditions; it has no knowledge of its own faultiness or that of5

its peers. Wherever the formal speci�cations consider the two cases of whether a processoris faulty or not, it is important to remember that this case analysis is not performed by therunning system. Also, it is important to realize that transient-fault recovery is a processthat is continually in e�ect, even when there have been no fault occurrences. Each processorin the system continually votes and replaces its state with voted values. Thus, the transientfault recovery process does not require fault detection.1.3 Previous E�ortsMany techniques for implementing fault-tolerance through redundancy have been developedover the past decade, e.g. SIFT [11], FTMP [12], FTP [13], MAFT [14], and MARS [15].An often overlooked but signi�cant factor in the development process is the approach tosystem veri�cation. In SIFT and MAFT, serious consideration was given to the need tomathematically reason about the system. In FTMP and FTP, the veri�cation concept wasalmost exclusively testing.Among previous e�orts, only the SIFT project attempted to use formal methods [16]. Al-though the SIFT operating system was never completely veri�ed [17], the concept of Byzan-tine Generals algorithms was developed [18] as was the �rst fault-tolerant clock synchroniza-tion algorithm with a mathematical performance proof [9]. Other theoretical investigationshave also addressed the problems of replicated systems [19].Some recent work at SRI International has focused on problems related to the style offault-tolerant computing adopted by RCP. Rushby has studied a fault masking and tran-sient recovery model and created a formalization of it using Ehdm [20, 21]. In addition,Shankar has undertaken the formalization of a general scheme for modeling fault-tolerantclock synchronization algorithms [22, 23].2 Speci�cation Hierarchy and Veri�cation ApproachThis section outlines the general methods used in the RCP speci�cations and proofs. Detaileddiscussions of the actual speci�cations appear in later sections.2.1 The State Machine Approach to Speci�cationThe speci�cation of the Reliable Computing Platform (RCP) is based upon a state-machinemethod. The behavior of the system is described by specifying an initial state and theallowable transitions from one state to another. The speci�cation of the transition mustdetermine (or constrain) the allowable destination states in terms of the current state andcurrent inputs. One way of doing this is to specify the transition as a function:ftran : state� input! stateThis is an appealing method when it can be used. A second method is to specify the transitionas a mathematical relation between the current state, the input and the new state. One way6

to specify a mathematical relation is to de�ne it using a function from the current state, thecurrent input and the new state to a boolean:R : state� input� state! booleanThe function R is true precisely when the relation holds and false, otherwise. The meaningis as follows: a transition from the current state to the new state can occur only when therelation is true. Although the concept is simple it is somewhat awkward to use at �rst.Consider the function g de�ned by g(x) = (x+ 4)2.In relational form this function might be expressed by:R(x; y) = [y = (x+ 4)2]The latter form is more awkward than the former when a purely functional relationship existsbetween x and y. However, a relational approach has some advantages over a functionalapproach for the speci�cation of complex system behavior. In particular, nondeterminismcan be accommodated in a speci�cation by only partially constraining system behavior. Forexample, if R is changed to the following:R(x; y) = [x > 0 � y = (x+ 4)2]the value of y is speci�ed only for positive values of x. In other cases, any value of y wouldstand in the relation R to x. Such partially constrained speci�cations are very natural formodeling fault-tolerant systems. It allows us to say nothing about the behavior of failedcomponents, thereby enabling proved results to hold no matter what behavior is exhibitedby failed components during system operation.The relation R would be described as follows in the Ehdm speci�cation language:R: function[number, number -> bool] =(LAMBDA x,y: (x > 0 IMPLIES y = (x+4)*(x+4)))The �rst line declares that R is a function from number � number to the set of booleans(bool). The second line uses lambda notation to de�ne the body of the function.It should also be noted that the modeling approach used in this paper is not based upona �nite state machine technique. Some of the components of the state takes values fromin�nite domains. Therefore, veri�cation tools such as STATEMATE [24] or MCB [25] arenot applicable to our speci�cations.2.2 Specifying Behavior in the Presence Of FaultsThe speci�cation of the RCP system is given in relational form. This enables one to leaveunspeci�ed the behavior of a faulty component. Consider the example below.Rtran : function[State;State! bool] =(� s; t : nonfaulty(s(i)) � t(i) = f(s(i)))7

In the relation Rtran, if component i of state s is nonfaulty, then component i of the nextstate t is constrained to be equal to f(s(i)). For other values of i, that is, when s(i) is faulty,the next state value t(i) is unspeci�ed. Any behavior of the faulty component is acceptablein the speci�cation de�ned by Rtran.An alternative approach is to de�ne the transition as a partially-speci�ed function:ftran : function[State! State]tran ax : Axiom nonfaulty(s(i)) � ftran(s)(i) = g(s(i))This approach does not �t within the de�nitional structure of Ehdm. Therefore, one mustuse an axiom to specify properties of a total, but partially de�ned function. This leads to alarge number of axioms at the base of the proofs and signi�cantly increases the possibilityof inconsistency in the axiom set.2.3 The Speci�cation HierarchyThe RCP speci�cation consists of four separate models of the system: Uniprocessor Sys-tem (US), Replicated Synchronous (RS), Distributed Synchronous (DS), Distributed Asyn-chronous (DA). Each of these speci�cations is in some sense complete; however, they are atdi�erent levels of abstraction and describe the behavior of the system with di�erent degreesof detail. The US model is the most abstract and de�nes the behavior of the system using asingle uninterpreted de�nition. The RS level supplies more detail. The computation is repli-cated on multiple processors but the data exchange and voting is captured in one transition.The next level, the DS level, introduces even more detail. Explicit bu�ers for data exchangeare modeled and the transition of the RS level is decomposed into 4 sub-transitions. The DAlevel introduces time, and di�erent clock times on each of the separate processors.41. Uniprocessor System layer (US). As in the Phase 1 report [1], this constitutes thetop-level speci�cation of the functional system behavior de�ned in terms of an idealized,fault-free computation mechanism. This speci�cation is the correctness criterion to bemet by all lower level designs. The top level of the hierarchy describes the operatingsystem as a function that performs an arbitrary, application-speci�c computation.2. Replicated Synchronous layer (RS). This layer corresponds to level 2 of the Phase 1report. Processors are replicated and the state machine makes global transitions as ifall processors were perfectly synchronized. Interprocessor communication is hidden andnot explicitly modeled at this layer. Suitable mappings are provided to enable proofsthat the RS layer satis�es the US layer speci�cation. Fault tolerance is achieved usingexact-match voting on the results computed by the replicated processors operating onthe same inputs. Exact match voting depends on two additional system activities:(1) single source input data must be sent to the redundant sites in a consistent man-ner to ensure that each redundant processor uses exactly the same inputs during its4Due to the di�culties associated with reasoning about asynchronous systems, it was desirable to performas much of the design and veri�cation using a synchronous model as possible. Thus, only at level 4 is timeexplicitly introduced. 8

computations, and (2) the redundant processing sites must synchronize for the vote.Interactive consistency can be achieved on sensor inputs by use of Byzantine-resilientalgorithms [18], which are probably best implemented in custom hardware. To ensureabsence of single-point failures, electrically isolated processors cannot share a singleclock. Thus, a fault-tolerant implementation of the uniprocessor model must ultimatelybe an asynchronous distributed system. However, the introduction of a fault-tolerantclock synchronization algorithm, at the DA layer of the hierarchy, enables the upperlevel designs to be performed as if the system were synchronous.3. Distributed Synchronous layer (DS). Next, the interprocessor communicationmechanism is modeled and transitions for the RS layer machine are broken into aseries of subtransitions. Activity on the separate processors is still assumed to occursynchronously. Interprocessor communication is accomplished using a simple mailboxscheme. Each processor has a mailbox with bins to store incoming messages from eachof the other processors of the system. It also has an outgoing box that is used tobroadcast data to all of the other processors in the system. The DS machine must beshown to implement the RS machine.4. Distributed Asynchronous layer (DA). Finally, the lowest layer relaxes the as-sumption of synchrony and allows each processor to run on its own independent clock.Clock time and real time are introduced into the modeling formalism. The DA machinemust be shown to implement the DS machine provided an underlying clock synchro-nization mechanism is in place.The basic design strategy is to use a fault-tolerant clock synchronization algorithm as thefoundation of the operating system. The synchronization algorithm provides a global timebase for the system. Although the synchronization is not perfect it is possible to developa reliable communications scheme where the clocks of the system are skewed relative toeach other, albeit within a strict known upper bound. For all working clocks p and q, thesynchronization algorithm provides the following key property:jcp(T)� cq(T)j < �assuming that the number of faulty clocks, say m, does not exceed (nrep�1)=3, where nrepis the number of replicated processors. This property enables a simple communicationsprotocol to be established whereby the receiver waits until maxb + � after a pre-determinedbroadcast time before reading a message, where maxb is the maximum communication delay.Each processor in the system executes the same set of application tasks every cycle. Acycle consists of the minimumnumber of frames necessary to de�ne a continuously repeatingtask schedule. Each frame is frame time units of time long. A frame is further decomposedinto 4 phases. These are the compute, broadcast, vote and sync phases. During the computephase, all of the applications tasks scheduled for this frame are executed. The results of alltasks that are to be voted this frame are then loaded into the outgoing mailbox. Duringthe next phase, the broadcast phase, the system merely waits a su�cient amount of time toallow all of the messages to be delivered. As mentioned above, this delay must be greaterthan maxb + �. During the vote phase, each processor retrieves all of the replicated data9

from each processor and performs a voting operation. Typically, this operation is a majorityvote on each of the selected state elements. The processor then replaces its local memorywith the voted values. It is crucial that the vote phase is triggered by an interrupt andall of the vote and state-update code be stored in ROM. This will enable the system torecover from a transient even when the program counter has been a�ected by a transientfault. Furthermore, the use of ROM is necessary to ensure that the code itself is not a�ectedby a transient.5 During the �nal phase, the sync phase, the clock synchronization algorithmis executed. Although conceptually this can be performed in either software or hardware,we intend to use a hardware implementation.2.4 Extended State Machine ModelFormalizing the behavior of the Distributed Asynchronous layer requires a means of incor-porating time. We accomplish this by formulating an extended state machine model thatincludes a notion of local clock time for each processor. It also recognizes several typesof transitions or operations that can be invoked by each processor. The type of operationdictates which special constraints are imposed on state transitions for certain components.The time-extended state machine model we use allows for autonomous local clocks oneach processor to be modeled using snapshots of clock time coinciding with state transitions.Clock values represent the time at which the last transition occurred (time current state wasentered). If a state was entered by processor p at time T and is occupied for a duration D,the next transition occurs for p at time T +D and this clock value is recorded for p in thenext state.6 A function cp(T) is assumed to map local clock values for processor p into realtime. cp(T) is a speci�cation-only function; it is not implemented by the system.Clocks may become skewed in real time. Consequently, the occurrence of correspondingevents on di�erent processors may be skewed in real time. A state transition for the DAstate machine corresponds to an aggregate transition in which each processor experiencesa particular event, such as completing one phase of a frame and beginning the next. Eachprocessor may experience the event at di�erent real times and even di�erent clock times ifduration values are not identical.The DA model is based on a specialized kind of state machine tailored to the needs ofan asynchronous system of replicated processors. The intended interpretation is that eachcomponent of the state models the local state of one processor and its associated hardware.Each processor is assumed to have a local clock running independently of all the others.Interprocessor communication is achieved by one class of transition that performs a simulta-neous broadcast of a portion of the local state variables to all the other processors. Broadcastvalues are assumed to arrive in the destination mailboxes within a bounded amount of realtime maxb.The four classes of transitions are de�ned as follows:5In the design speci�cations, these implementation details are not explicitly speci�ed. However, it is clearthat in order to successfully implement the models and prove that the implementation performs as speci�ed,such implementation constructs will be needed. These issues will be explored in detail in future work.6We will use the now standard convention of representing clock time with capital letters and real timewith lower case letters. 10

66 -
- mapmap Nbottom(s; t) ts

Ntop(s0; t0) t0s0
Figure 3: States, transitions, and mappings.1. L: Purely local processing that involves no broadcast communication or reading of themailboxes.2. B: Broadcast communication where a send is initiated when the state is entered andmust be completed before the next transition.3. R: Local processing that involves no send operations, but does include reading ofmailbox values.4. C: Clock synchronization operations that may cause the local clock to be adjusted andappear to be discontinuous.We make the simplifying assumption that the duration spent in each state, except those oftype C, is nominally a �xed amount of clock time. Allowances need to be made, however, forsmall variations in the actual clock time used by real processors. Thus if � is the maximumrate of variation and DI ;DA are the intended and actual durations, then jDA �DI j � �DImust hold.2.5 The Proof MethodThe proof method is a variation of the classical algebraic technique of showing that ahomomorphism exists. Such a proof can be visualized as showing that a diagram \commutes"(�gure 3). The system is described at two levels of abstraction, which will be referred toas the top and bottom levels for convenience. The top level consists of a current state s0, adestination state, t0 and a transition that relates the two. The properties of the transitionare given as a mathematical relation, Ntop(s0; t0). Similarly, the bottom level consists of astate s, a destination state, t and a transition that relates the two. The properties of thetransition are given as a mathematical relation, Nbottom(s; t). The state values at the bottomlevel are related to the state values at the top level by way of a mapping function, map. Toestablish that the bottom level implements the top level one must show that the diagramcommutes: Nbottom(s; t) � Ntop(map(s);map(t))11

����������������
������������������������ ���� ���� ���� ����

-- 6666 66666 ----- - - -SyncVoteBroadcastCompute
RSmap
DAmapDSmapDADS

RSUS
Figure 4: The RCP state machine and proof hierarchywhere map(s) = s0 and map(t) = t0 in the diagram. One must also show that initial statesmap up: Ibottom(s) � Itop(map(s))An additional consideration in constructing such proofs is that only states reachable froman initial state are relevant. Thus, it su�ces to prove a conditional form of commutativitythat assumes transitions always begin from reachable states. A weaker form of the theoremis then called for: reachable(s) ^ Nbottom(s; t) � Ntop(map(s);map(t))This form enables proofs that proceed by �rst establishing state invariants. Each invariantis shown to hold for all reachable states and then invoked as a lemma in the main proof.Figure 4 shows the complete state machine hierarchy and the relationships of transitionswithin the aggregate model. By performing three layer-to-layer state machine implementa-tion proofs, the states of DA, the lowest layer, are shown to correctly map to those of US,the highest layer. This means that any implementation satisfying the DA speci�cation willlikewise satisfy US under our chosen interpretation.12

3 US/RS Speci�cationUp to now we have dealt only with general methods. Next we present the RCP speci�cationsas developed using the Ehdm language. An index at the end of this report indicates pagenumbers where each speci�cation identi�er and special symbol is de�ned in the text. Thecomplete Ehdm speci�cations can be found in Appendix A.3.1 Preliminary De�nitionsThe US and RS speci�cations are expressed in terms of some primitive type de�nitions.First, we must establish a \domain" or type to represent the complete computation state ofa processor. This domain is called Pstate. It is declared in Ehdm asPstate: Type (* computation state of a single processor *)Thus, all of the state information subject to computation has been collapsed into a singletype Pstate. Similarly, inputs denotes the domain of external system inputs (sensors), andoutputs the domain of output values that will be sent to the actuators of the system. Thesedomains are named by the following Ehdm declarations:inputs: Type (* type of external sensor input *)outputs: Type (* actuator output type *)The number of processors in the system is declared as an arbitrary, positive constant, nrep:nrep: nat (* number of replicated processors *)The constraint on nrep's value is expressed by the following axiomprocessors exist ax: Axiom nrep > 0is a requirement that the system have at least one processor. Nearly all symbolic constantswe introduce will have similar constraints imposed on them.At the RS level and below, information is exchanged among processors via some interpro-cessor communication mechanism. Additional types are needed to describe the informationunits involved, being based on a mailbox model of communication. First, we introduce adomain of values for each bin in the mailboxes:MB : Type (* mailbox exchange type *)Then we construct a type for a complete mailbox on a processor:MBvec: Type = array [processors] of MBThis scheme provides one slot in the mailbox array for each replicated processor.13

3.2 US Speci�cationThe US speci�cation is very simple:s; t: Var Pstateu: Var inputsNus: De�nition function[Pstate;Pstate; inputs! bool] =(� s; t; u : t = fc(u; s))The function Nus de�nes a mathematical relation between a current state and a �nal state,i.e., it de�nes the transition relation. For this model, the transition condition is captured by afunction: fc(u; s), i.e., the computation performed by the uniprocessor system is determinis-tic and thus can be modeled by a function fc : inputs�Pstate! Pstate. To �t the relational,nondeterministic state machine model we let the state transition relation Nus(s; t; u) hold i�t = fc(u; s).External system outputs are selected from the values computed by fc. The functionfa : Pstate! outputs denotes the selection of state variable values to be sent to the actuators.The type outputs represents a composite of actuator output types.Although there is no explicit mention of time in the US model, it is intended that atransition correspond to one frame of the execution cycle (i.e., the schedule).The uninterpreted constant initial proc state represents the initial Pstate value from whichcomputation begins.initial us: function[Pstate! bool] = (� s : s = initial proc state)initial us is expressed in predicate form for consistency with the overall relational method ofspeci�cation, although in this case the initial state value is unique.3.3 RS Speci�cationAt the RS layer of design, the state is replicated and a postprocessing step is added aftercomputation. This step represents the voting of state variables and thus may be selectivelyapplied. It su�ces to encapsulate the entire voting process under a single function of theglobal state. Nonetheless, it is better to split voting into two parts to facilitate re�nement tothe DS layer. Another di�erence introduced at this layer is that the state transition relationneeds to be conditioned on the nonfaulty status of each processor.The global state at this level has type RSstate. This is a vector of length nrep whereeach component of the vector de�nes the state of a speci�c processor. Each processor inthe system can be faulty or nonfaulty as a function of time measured in frames. The localprocessor \state" must not only re
ect the computation state but indicate whether or nota processor is faulty. Such status information about faultiness is included for the purposeof modeling system behavior. An actual system component would be unable to maintainthis status and it is understood that this part of the state exists only to model operationalbehavior and is not an implemented part of the system. Speci�cation of the state type is asfollows: 14

rs proc state: Type = Record healthy : nat;proc state : Pstateend recordRSstate: Type = array [processors] of rs proc stateThe state of a single processor is given by a record named rs proc state. The �rst �eld ofthe record is healthy, which is 0 when a processor is faulty. Otherwise, it indicates the(unbounded) number of state transitions since the last transient fault. Its value is onegreater than the number of prior nonfaulty frames. A permanent fault is indicated by aperpetual value of 0. A processor that is recovering from a transient fault is indicated by avalue of healthy less than the recovery period, denoted by the constant recovery period. Thisconstant is determined by details of the application task schedule and the voting pattern usedfor transient recovery. A processor is said to be working whenever healthy � recovery period.The second �eld of the record is the computation state of the processor. It takes values fromthe same domain as used in the US speci�cation. The complete state at this level, RSstate,is a vector (or array) of these records.Two uninterpreted functions are assumed to express speci�cations that involve selectivevoting on portions of the computation state. Their role is described more fully in section 3.5.fs: function[Pstate! MB] (* state selection for voting *)fv: function[Pstate;MBvec! Pstate] (* voting and overwriting *)These two functions split up the selective voting process to mirror what happens in the RCParchitecture. First, fs is used to select a subset of the state components to be voted duringthe current frame. The choice of which components to vote is assumed to depend on thecomputation state. It maps into the type MB, which stands for a mailbox item. Second,the function fv takes the current state value and overwrites selected portions of it withvoted values derived from a vector of mailbox items. Voting is performed on a component-by-component basis, that is, applied to each task state separately, rather than applied toentire mailbox contents. Note that selection via fs need not be a mere projection, but couldinvolve more complex data transformations such as adding checksums to ensure integrityduring transmission.Given this background, the transition relation, Nrs, can be de�ned:Nrs: De�nition function[RSstate;RSstate; inputs! bool] =(� s; t; u : (9 h : (8 i :(s(i)):healthy > 0� good values sent(s; u; h(i)) ^ voted �nal state(s; t; u; h; i)))^ allowable faults(s; t))This relation is de�ned in terms of three subfunctions: good values sent, voted �nal state,and allowable faults. The �rst aspect of this de�nition to note is that the relation holdsonly when allowable faults is true. This corresponds to the \Maximum Fault Assumption"discussed in [1], namely that a majority of processors have been working up to the currenttime. The next thing to notice is that the transition relation is de�ned in terms of a conjunc-tion good values sent(s,u,h(i)) ^ voted �nal state(s,t,u,h,i))). The meaning is intuitive: the15

outputs produced by the good processors are contained in the vector h (i.e., h(i) is derivedfrom the value produced on processor i), and the �nal state t is obtained by voting the hvalues. Let us look at the voted �nal state relation �rst.voted �nal state: function[RSstate;RSstate; inputs;MBmatrix; processors! bool]= (� s; t; u; h; i : t(i):proc state = fv(fc(u; s(i):proc state); h(i)))Processor i is initially in state s(i). If it is nonfaulty (s(i):healthy > 0), then its transitionto the state t(i) observes the following constraint:t(i):proc state = fv(fc(u; s(i):proc state); h(i)))Otherwise, the behavior of the processor is not de�ned (i.e., a known mathematical relationis not given). The change to the processor state is de�ned using two functions: fc; fv. Thefunction fc is the same function used in the US speci�cation. The function fv operates onthe updated computation state and values obtained from the other processors to produce anew state. The idea is that the new state is obtained by replacing local values with votedvalues.The values sent by the other processors must satisfy the following relation:good values sent: function[RSstate; inputs;MBvec! bool] =(� s; u;w : (8 j :(s(j)):healthy > 0 � w(j) = fs(fc(u; s(j):proc state))))This relation constrains the h(i) values used in the de�nition of the Nrs transition relation.Although this function is called with h(i) as an argument, its formal parameter is named w.There is one w value for each processor, which is used to model that processor's mailboxes.If the sending processor j is nonfaulty (s(j):healthy > 0), then the value in the receivingmailbox w is given byfs(fc(u; s(j):proc state)).The function fs selects which portion of the total state is to be voted. Note that since it isa function of the (complete) state, it can di�er as a function of the frame, i.e., di�erent dataare voted during di�erent frames.The allowable faults function is de�ned as follows:allowable faults: function[RSstate;RSstate! bool] =(� s; t : maj working(t)^ (8 i : t(i):healthy > 0 � t(i):healthy = 1 + s(i):healthy))This function enforces the restriction imposed by the Maximum Fault Assumption, namelythat all reachable states must have a majority of working processors. The condition isexpressed in terms of the function maj working and its subordinates:maj condition: function[set[processors]! bool] =(� A : 2 � card(A) > card(fullset[processors]))16

working proc: function[RSstate; processors! bool] =(� s; p : (s(p)):healthy � recovery period)working set: function[RSstate! set[processors]] =(� s : (� p : working proc(s; p)))maj working: function[RSstate! bool] =(� t : maj condition(working set(t)))The working set function gives the set of working processors for the current replicated state.The cardinality of this set is then the number of working processors. (Note that sets areusually represented in Ehdm by predicates on the element type. Thus, (�x : P (x)) denotesthe set fxjP (x)g.) The relation allowable faults is de�ned whenever the destination statecontains a majority of working processors. It also states that if a processor is nonfaulty forthe current frame then the next state's value of healthy equals the previous state's valueplus one.The initial state predicate initial rs sets each element of the RS state array to the samevalue with the healthy �eld equal to recovery period and the proc state �eld equal to ini-tial proc state.initial rs: function[RSstate! bool] =(�s : (8p : s(p):healthy = recovery period^s(p):proc state = initial proc state))The constant recovery period is the number of frames required to fully recover a processor'sstate after experiencing a transient fault. By initializing all healthy �elds to this value, weare starting the system with all processors working.3.4 Actuator OutputsThe nature of actuator outputs in the RCP application deserves special attention. In theuniprocessor case, an output is produced during each frame and sent to the actuators andno ambiguity exists. In a replicated system, however, multiple actuator values are producedand sent during each frame. Each nonfaulty processor p sends actuator values given byfa(rs(p):proc state). There are nrep sets of actuator values delivered in parallel, some ofwhich may be copies of previous values for processors that have failed in such a way as tostop generating new values.It is understood that actuator outputs may be sent through one or more hardware votingplanes before arriving at the actuators themselves. Other types of signal transformationsmay be applied to actuator lines between the output drivers and termination points. Ad-ditionally, some kind of force-sum voting typically is applied at the actuators to mask thepresence of errors in one or more channels. All of this activity seeks to ensure that actuatorsperform as directed by a consensus of processors. These special-purpose requirements of theapplication leave us unable to completely re
ect the proper constraints in the correctnesscriteria. However, we can use the majority function to map replicated output values into thesingle actuator output value that would be produced by an ideal uniprocessor. This capturesthe e�ect of voting planes and approximates the e�ect of force-sum voting at the actuators.17

To show that replicated actuator outputs can be mapped into a single actuator output, wereason as follows. At the RS level, there are nrep actuator values given by fa(rs(p):proc state)for p = 1; . . . ; nrep. In section 4, a property of RS states is described that asserts thata majority exists among the proc state values. In other words, a majority of values infrs(p):proc stateg equal maj(rs). Therefore, a majority of fa(rs(p):proc state) values existsand is equal to fa(maj(rs)). Since maj(rs), the mapped value of an RS state, is equal to thecorresponding US state, this shows that a majority of RS actuator outputs match the valueproduced by the fault-free US machine.Note that various additional requirements may be necessary, but are regarded as peculiarto the nature of an RCP application. Hence they must be imposed as correctness criteriabeyond those necessary to show that one state machine properly implements another. Theintended use of replicated actuator outputs is not contained in the state machine models andmay necessitate the use of additional, application-speci�c correctness conditions.3.5 Generic Fault-Tolerant ComputingTo model a very general class of fault-tolerant, real-time computing schemes, we seek toparameterize the speci�cations as much as possible. This parameterization takes the formof a set of uninterpreted constants, types, and functions along with axioms to constraintheir values. Some instances have already been introduced. The function fc, for example,represents any computation that can be modeled as a function mapping from inputs andcurrent state into a new state. As hardware redundancy and transient fault recovery areadded to the speci�cations, additional types and functions are needed to express systembehavior.3.5.1 State Model for Transient Fault RecoveryThus far, we have not concerned ourselves with the internal structure of the computationstate Pstate. However, to capture the concept of recovering this state information piecewise,it is necessary to make some minimal assumptions about the structure of a Pstate value.control state: Type (* portion of state used to control or schedulecomputation activities, e.g., frame counter *)cell: Type (* index for components of computation state *)cell state: Type (* information content of computation state components *)We assume the state contains a control portion, used to schedule and manage computation,and a vector of cells, each individually accessible and holding application-speci�c state in-formation. A sample instantiation of these types is that found in our previous report [1]:the control state is a frame counter and the cells represent the outputs of task instances inthe task schedule. Unlike our previous model, however, the more general framework allowsa system to maintain state information further back than just the previous execution of aschedule cell.Also assumed is the existence of access functions to extract and manipulate these itemsfrom a Pstate value. 18

succ: function[control state! control state] (* next control state *)fk: function[Pstate! control state] (* extracts control state *)ft: function[Pstate; cell! cell state] (* extracts cell (e.g. task) state *)As described in section 3.3, two additional functions are assumed to express speci�ca-tions that involve selective voting on portions of the computation state. The functionsfs : Pstate! MB and fv : Pstate�MBvec ! Pstate were introduced to model the selectivevoting process applied by each processor. fs selects which portions of the computation re-sults are subject to voting. fv takes these selected values from the replicated processors andreplaces the required portions of the current state with voted values.For every voting scheme used for transient fault recovery within RCP, we must be able todetermine when the state components have been recovered from voted values. This conditionis expressed in terms of the current control state and the number of nonfaulty frames sincethe last transient fault. Two uninterpreted functions are provided for this purpose.rec: function[cell; control state; nat! bool]The predicate rec(c;K;H) is true i� cell c's state should have been recovered when in controlstate K with healthy frame count H. Recall that we use a healthy count of one to indicatethat the current frame is nonfaulty, but the previous frame was faulty. This means thatH � 1 healthy frames have occurred prior to the current one.dep: function[cell; cell; control state! bool]The predicate dep(c; d;K) indicates that cell c's value in the next state depends on cell d'svalue in the current state, when in control state K. This notion of dependency is di�erentfrom the notion of computational dependency; it determines which cells need to be recoveredin the current frame on the recovering processor for cell c's value to be considered recoveredat the end of the current frame. If cell c is voted during K, or its computation takes onlysensor inputs, there is no dependency. If c is not computed during K, c depends only on itsown previous value. Otherwise, c depends on one or more cells for its new value.One derived function is used in the axioms. It asserts that two states X and Y agree onall the corresponding cells on which cell c depends.dep agree: function[cell; control state;Pstate;Pstate! bool] =(� c;K;X; Y : (8 d : dep(c; d;K) � ft(X; d) = ft(Y; d)))3.5.2 Transient Recovery AxiomsHaving postulated several functions that characterize a generic fault-tolerant computingapplication, it is necessary to introduce axioms that su�ciently constrain these functions.Once concrete de�nitions for the functions have been chosen, these axioms must be provedto follow as theorems for the RCP results to hold for a given application. The eight axiomsare presented below.succ ax: Axiom fk(fc(u; ps)) = succ(fk(ps))19

The �rst axiom states the simple condition that fc computes the successor of its control statecomponent.Three axioms give properties of the function rec.full recovery: Axiom H � recovery period � rec(c;K;H)initial recovery: Axiom rec(c;K;H) � H > 2dep recovery: Axiom rec(c; succ(K);H + 1) ^ dep(c; d;K) � rec(d;K;H)First, we require that after the recovery period has transpired, all cells should be consideredrecovered by rec. Second, it takes a minimum of two frames to recover a cell. (This isnecessary because one frame is used to recover the control state. In some applications, itmay be possible to recover cells in one frame, but our proof approach does not accommodatethose cases and the more conservative minimum of two is used.) Third, if cell c is to berecovered in the next state, all cells it depends on must be recovered in the current state.components equal: Axiomfk(X) = fk(Y) ^ (8 c : ft(X; c) = ft(Y; c)) � X = YThis axiom, which is a type of extensionality axiom, requires that the control state and cellstate values form an exhaustive partition of a Pstate value.Two axioms capture the key conditions for recovery of individual state components.control recovered: Axiommaj condition(A) ^ (8 p : p 2 A � w(p) = fs(ps)) � fk(fv(Y;w)) = fk(ps)cell recovered: Axiommaj condition(A)^ (8 p : p 2 A � w(p) = fs(fc(u; ps)))^ fk(X) = K ^ fk(ps) = K ^ dep agree(c;K;X; ps)� ft(fv(fc(u;X); w); c) = ft(fc(u; ps); c)The �rst axiom requires that the control state component be recovered after every frame.Thus, fv must vote the control state unconditionally and update the Pstate value accordingly.The conditions in the antecedent state that for a majority of processors, their mailbox itemsmust match the value selected by the function fs. The other axiom gives the requiredcondition for recovering an individual cell state value. All cell values that c depends on mustalready agree with the majority value. After voting with fv, the function ft must extract acell state that matches that of the consensus.vote maj: Axiom maj condition(A) ^ (8 p : p 2 A � w(p) = fs(ps))� fv(ps; w) = psThe �nal axiom expresses the additional requirement on fv that if a majority of processorsagree on selected mailbox values derived from state ps, then fv applied to ps preserves thevalue ps. In other words, once a Pstate value has been fully recovered, it will stay that wayin the face of subsequent voting. 20

3.5.3 Sample Interpretations of TheoryThe proofs of section 4 make use of the foregoing axioms to establish that the RS speci�ca-tion correctly implements the US speci�cation. A valid interpretation of the model providesde�nitions for the uninterpreted types and functions that are ultimately used to prove theaxioms as theorems of the interpreted theory. To maintain the generality of our model andits applicability to a wide range of designs, we do not provide any standard interpreta-tions. Nevertheless, it is desirable to carry out the exercise to establish that the axioms areconsistent and can be satis�ed for reasonable interpretations.Two sample interpretations were constructed based on voting schemes introduced inthe Phase 1 report [1]. De�nitions for the basic concepts of a static, task-based schedulingsystem were formalized �rst. Included were the notions of cells as being derived from a frame,subframe pair, and state components to record both the frame counter as well as task outputs.Task execution according to a �xed, repeating schedule was assumed. De�nitions were alsoprovided for the continuous voting and cyclic voting schemes [1]. In both cases, the transientrecovery axioms were proved using Ehdm. A preliminary form of these speci�cations aregiven in Appendix B.Carrying out the proofs required several changes to the module structure embodied inthe speci�cations of Appendix A. For this reason, the speci�cations in Appendix B have notyet been integrated with the speci�cations of Appendix A. Additional work is required tointegrate these provisional interpretations into the existing framework. The proofs conductedthus far were performed simply to demonstrate that the axioms could be satis�ed and arethus consistent.The continuous voting scheme requires that all state components are voted during eachframe. Hence transient recovery is nearly immediate. Formalizations for this case are verysimple and the proofs are trivial. The cyclic voting scheme represents the typical case wherestate components are voted in the frame they are produced. A cell's value is not voted duringframes where it is not recomputed. Formalization in this case is somewhat more involvedand the proofs require a bit more e�ort. The proofs and supporting lemmas comprise abouttwo pages of Ehdm speci�cations. A few selected de�nitions for the cyclic voting functionsare shown below.fs: function[Pstate! MB] =(� ps : ps with [(control) := ps:control; (cells) :=cell apply((� c : ps:cells(c));ps:control;null cell array;num cells)])fv: function[Pstate;MBvec! Pstate] =(� ps; w : ps with [(control) := k maj(w); (cells) :=cell apply((� c : t maj(w; c));ps:control;ps:cells;num cells)])21

rec: function[cell; control state; nat! bool] =(� c;K;H : H> 1 + (if K = cell frame(c)then schedule lengthelse mod minus(K; cell frame(c))end if))dep: function[cell; cell; control state! bool] =(� c; d;K : cell frame(c) 6= K ^ c = d)A few supporting de�nitions are omitted; these functions are presented merely to show thegeneral order of complexity involved.4 RS to US ProofProving that the RS state machine correctly implements the US state machine involvesintroducing a mapping between states of the two machines. The function RSmap de�nes therequired mapping, namely the majority of Pstate values over all the processors.RSmap: function[RSstate! Pstate] = (� rs : maj(rs))maj: function[RSstate! Pstate]maj ax: Axiom (9A :maj condition(A) ^ (8 p : p 2 A � (rs(p)):proc state = us))� maj(rs) = usThe two theorems required to establish that RS implements US are the following.frame commutes: Theorem reachable(s)^Nrs(s; t; u) � Nus(RSmap(s);RSmap(t); u)initial maps: Theorem initial rs(s) � initial us(RSmap(s))The theorem frame commutes, depicted in �gure 5, shows that a successive pair of reachableRS states can be mapped by RSmap into a successive pair of US states. The theoreminitial maps shows that an initial RS state can be mapped into an initial US state.The notion of state reachability is used to express the theorem frame commutes. Thisconcept is formalized as follows:7rs measure: function[RSstate; nat! nat] == (� rs; k : k)reachable in n: function[RSstate; nat! bool] =(� t; k : if k = 0then initial rs(t)else (9 s; u : reachable in n(s; k � 1) ^ Nrs(s; t; u))end if) by rs measurereachable: function[RSstate! bool] = (� t : (9 k : reachable in n(t; k)))22

66 -
- RSmapRSmap Nrs(s; t; u) ts

Nus(s0; t0; u) t0s0
Figure 5: Mappings in the RS to US proof.Proofs for the two main theorems are supported by a handful of lemmas. The mostimportant is a state invariant that relates values of various state components to their corre-sponding consensus values.state invariant: function[RSstate prop! bool] =(� rs prop : (8 t : reachable(t) � rs prop(t)))state rec inv: Lemma state invariant(state recovery)control recovery: function[RSstate! bool] =(� s : (8 p : (s(p)):healthy > 1 � fk((s(p)):proc state) = fk(maj(s))))cell recovery: function[RSstate! bool] =(� s : (8 p; c :rec(c; fk((s(p)):proc state); (s(p)):healthy)� ft((s(p)):proc state; c) = ft(maj(s); c)))state recovery: function[RSstate! bool] =(� s : maj exists(s) ^ control recovery(s) ^ cell recovery(s))The invariant state recovery is shown to hold for all reachable states. The control recoverycondition of this invariant asserts that if a processor p has been nonfaulty for at least oneframe, then the control state, as extracted by fk, is equal to the consensus value. Similarly,the cell recovery condition asserts that if cell c is due to be recovered, as indicated by thepredicate rec, then cell state c, as extracted by ft, is equal to the consensus value. Provingthe invariant requires invoking the axioms presented in section 3.5.Lemmas showing that a majority among RS state values continues to exist after everystate transition are also proved in support of the invariant. One such lemma is also centralto the proof of frame commutes.7Note that functions de�ned with \==", such as in rs measure, are semantically equivalent to thosede�ned with \="; the only di�erence is automatic expansion of \==" functions during theorem proving.23

rec maj f c: Lemmamaj working(s) ^ state recovery(s) ^Nrs(s; t; u) � maj(t) = fc(u;maj(s))With a majority of working processors and state recovery holding in current state s, thislemma concludes that maj applied to the next state t equals the computation step fc appliedto maj of s. From this lemma it is clear how RS states and their images under maj willcorrespond to the desired US states.With the state recovery invariant established, most of the work needed to prove the maintheorem frame commutes is in hand. One additional lemma is useful to bridge the gapbetween the two.working majority: function[RSstate! bool] =(� s : (8 p : p 2 working set(s) � (s(p)):proc state = maj(s)))consensus prop: Lemma state recovery(s) � working majority(s)The lemma consensus prop allows us to draw a key inference from the state recovery invariant,which is expressed by the predicate working majority. This predicate asserts that for allprocessors p that belong to the working set, i.e., for all working processors, p's value ofPstate is equal to the majority value.The proof of frame commutes now follows from rec maj f c and consensus prop and as-sorted de�nitions. The proof of initial maps follows from de�nitions and the lemma ini-tial maj cond, which states that an initial state satis�es the majority condition.initial maj cond: Lemma initial rs(s) � maj condition(working set(s))This completes the proof that the RS machine implements the US machine.Note that our proof is in terms of a generic model of fault-tolerant computation anddepends on the validity of the axioms of section 3.5. For some choices of de�nitions for theuninterpreted functions, there will be substantial work required to establish those axiomsas theorems. For example, the Minimal Voting scheme presented in our Phase 1 report [1]requires a nontrivial proof to establish that full recovery is achieved. Such details have beenomitted here. Nevertheless, the value of our revised approach is in its generality. The resultscan now be made to apply to a wide variety of frame-based, fault-tolerant architectures.5 DS Speci�cationIn the Distributed Synchronous layer we focus on two things: expanding the state to include\mailboxes" for interprocessor communication and dividing a frame transition into foursequential subtransitions. The state must also be expanded to include an indicator of whichphase of a frame is currently being processed. This is done as follows.The structure of the mailbox for a four-processor system is shown in �gure 6. Eachprocessor contains a mailbox with one slot dedicated to each other processor in the system.Each slot is large enough to contain the largest amount of data to be broadcast during oneframe. The nth slot of processor n serves as the outgoing mailbox.The local state for each processor can now be de�ned:24

bb
bb`̀---

--

--
-

--
-

P4P2P1P34321
Figure 6: Structure of Mailboxes in a four-processor systemds proc state: Type = Record healthy : nat;proc state : Pstate;mailbox : MBvecend recordThe vector of all processors ds proc state is named ds proc array:ds proc array: Type = array [processors] of ds proc stateThe complete DSstate is:DSstate: Type = Record phase : phases;proc : ds proc arrayend recordIn the DS speci�cation, a frame is decomposed into four phases:phases: Type = (compute; broadcast; vote; sync)The �rst �eld of DSstate holds the current phase. During each phase a distinct function isperformed.1. Computation. The proc state component of the state is updated with the results ofcomputation using the function fc.2. Broadcast. Interprocessor communication is e�ected by broadcasting the MB valuesto all other processors, which are deposited in their respective mailboxes.25

3. Voting. The received mailbox values are voted and merged with the current Pstatevalues to arrive at the end-of-frame state.4. Synchronization. The clock synchronization function is performed. (No details ofthe clocks are introduced until the DA speci�cation layer.)The transition relation for the frame is de�ned in terms of a phase-transition relationNds. frame N ds: function[DSstate;DSstate; inputs! bool] =(� s; t; u : (9 x; y; z :Nds(s; x; u) ^ Nds(x; y; u) ^Nds(y; z; u) ^ Nds(z; t; u)))Note how the intermediate states are de�ned using existential quanti�ers and that the outputstate of a phase transition becomes the input of the next phase transition. The net result ofperforming these four phase transitions will be shown to accomplish the same thing as thesingle transition of the RS speci�cation.The phase-transition relation is de�ned as follows:Nds: function[DSstate;DSstate; inputs! bool] =(� s; t; u : maj working(t)^ t:phase = next phase(s:phase)^ (8 i :if s:phase = syncthen N sds(s; t; i)else t:proc(i):healthy = s:proc(i):healthy^ (s:phase = compute � N cds(s; t; u; i))^ (s:phase = broadcast � N bds(s; t; i))^ (s:phase = vote � N vds(s; t; i))end if))Notice that the phase-transition relation only holds when the next state t has a majorityof working processors. This corresponds to the analogous condition in Nrs presented insection 3.3, where it appears as one conjunct of the allowable faults relation. Hence, allreachable states in the DS speci�cation must have a majority of working processors.The phase �eld of the state is advanced by the function next phase. The phase-transitionrelation is de�ned in terms of four sub-relations: N cds, N bds, N vds, andN sds, which correspond tothe compute, broadcast, vote and sync phases, respectively. The quanti�er 8i invokes the sub-relations for all of the processors of the system. Note that the statement t:proc(i):healthy =s:proc(i):healthy after the else requires that the value of healthy remain constant throughouta frame. Thus, if a processor is faulty anywhere in a frame it is considered to be faultythroughout; the value of healthy may only change at the frame boundaries, i.e., at the syncto compute transitions. Similarly, full recovery of state information does not occur until theend of a frame. This is consistent with the previous work [1].Table 1 provides a summary of the functions that are performed during each phase onnonfaulty processors. In the table si is an abbreviation for s:proc(i).The N cds sub-relation de�nes the behavior of a single processor during the compute phase:26

Phase Held constant Modi�edcompute healthy ti:proc state = fc(u; si:proc state)ti:mailbox(i) = fs(fc(u; si:proc state))broadcast proc state (8p : ti:mailbox(p) = sp:mailbox(p))healthyvote mailbox ti:proc state = fv(si:proc state; si:mailbox)healthysync proc state ti:healthy = 1 + si:healthyTable 1: Summary of activities during various phasesN cds: function[DSstate;DSstate; inputs; processors! bool] =(� s; t; u; i :s:proc(i):healthy > 0� t:proc(i):proc state = fc(u; s:proc(i):proc state)^ t:proc(i):mailbox(i) = fs(fc(u; s:proc(i):proc state)))During this phase, the proc state �eld is updated with the results of the computation:fc(u; s:proc(i):proc state)Also, the mailbox is loaded with the subset of the results to be broadcast as de�ned by thefunction fs. Recall that a processor's own mailbox slot acts as the place to post outgoingdata for broadcast to other processors.TheN bds sub-relation de�nes the behavior of a single processor during the broadcast phase:N bds: function[DSstate;DSstate; processors! bool] =(� s; t; i : s:proc(i):healthy > 0� t:proc(i):proc state = s:proc(i):proc state^ broadcast received(s; t; i))During this phase the proc state �eld remains unchanged and the broadcast received relationholds: broadcast received: function[DSstate;DSstate; processors! bool] =(� s; t; q : (8 p :s:proc(p):healthy > 0� t:proc(q):mailbox(p) = s:proc(p):mailbox(p)))This states that each nonfaulty processor q receives the values sent by other nonfaulty pro-cessors. If the sending processor p is faulty, then the consequent of the relation need not holdand the value found in p's slot of q's mailbox is indeterminate. If the receiving processor qis faulty, the broadcast received relation is not required to hold in N bds. In this situation, allof q's mailbox values are unspeci�ed.The N vds sub-relation de�nes the behavior of a single processor during the vote phase:27

N vds: function[DSstate;DSstate; processors! bool] =(� s; t; i : s:proc(i):healthy > 0� t:proc(i):mailbox = s:proc(i):mailbox^ t:proc(i):proc state= fv(s:proc(i):proc state; s:proc(i):mailbox))During this phase the mailbox �eld remains unchanged and the local processor state is up-dated with the result of voting the values broadcast by the other processors. The votefunction is named fv.The N sds sub-relation de�nes the behavior of a single processor during the sync phase:N sds: function[DSstate;DSstate; processors! bool] =(� s; t; i : (s:proc(i):healthy > 0� t:proc(i):proc state = s:proc(i):proc state)^ (t:proc(i):healthy > 0� t:proc(i):healthy = 1 + s:proc(i):healthy))During the sync phase, the computation state of a nonfaulty processor remains unchanged.At the end of the sync phase, the current frame ends, so the value of healthy is incrementedby one if the processor is to be nonfaulty in the next frame. This is the same conditionappearing in the relation allowable faults of section 3.3. Any processor assumed to be faultyin the next frame will have its healthy �eld set to zero. A limit on how many processorscan be faulty simultaneously is imposed by the predicate maj working. Therefore, not everypossible assignment of values to the healthy �elds is admissible; each assignment must satisfythe Maximum Fault Assumption.The predicate initial ds puts forth the conditions for a valid initial state. The initialphase is set to compute and each element of the DS state array has its healthy �eld equal torecovery period and its proc state �eld equal to initial proc state.initial ds: function[DSstate! bool] =(� s : s:phase = compute^ (8 i : s:proc(i):healthy = recovery period^ s:proc(i):proc state = initial proc state))As before, the constant recovery period is the number of frames required to fully recover aprocessor's state after experiencing a transient fault. By initializing the healthy �elds to thisvalue, we are starting the system with all processors working. Note that the mailbox �eldsare not initialized; any mailbox values can appear in a valid initial DSstate.6 DS to RS ProofThe DS speci�cation performs the functionality of the RS speci�cation in four sequentialsteps. Thus, we must show that the \frame" transition function, frame N ds,frame N ds(s; t; u) = (9x; y; z : Nds(s; x; u)^Nds(x; y; u)^Nds(y; z; u)^Nds(z; t; u))accomplishes the same function as a single transition of the RS level transition functionNrs(s; t; u) under an appropriate mapping function.28

6.1 DS to RS MappingThe DS to RS mapping function, DSmap, is de�ned as:DSmap: function[DSstate! RSstate] = (� ds : ss update(ds; nrep))where ss update is given by:ss update: Recursive function[DSstate; nat! RSstate] =(� ds; p : if (p = 0) _ (p > nrep)then rs0else ss update(ds; p � 1)with [(p) := rsproc0with [(healthy) := ds:proc(p):healthy;(proc state) := ds:proc(p):proc state]]end if) by ssu measureThis mapping copies the healthy and proc state �elds for each processor as illustrated in�gure 7. To establish that DS implements RS, the commutativity diagram of �gure 8 must��AA AA�� ��AA AA�� ��AA AA��
mailboxmailboxmailboxDSstate: phase nrep21 ...

...1 2 nrepRSstate:
proc statehealthy

healthy proc state
healthy proc state

proc statehealthy healthy proc state
proc statehealthyFigure 7: Mapping DS to RS: the DSmap functionbe shown to commute. To establish that the diagram commutes, the following formula mustbe proved.frame commutes: Theorems:phase = compute ^ frame N ds(s; t; u) � Nrs(DSmap(s);DSmap(t); u)Note that to make the correct correspondence, we must consider only DS states found at thebeginning of each frame, namely those whose phase is compute. Refer to �gure 4 on page 12for a visual interpretation of this theorem.It is also necessary to show that the initial states are mapped properly:29

66 -
- DSmapDSmap Nds(s; t; u) ts

Nrs(s0; t0; u) t0s0
Figure 8: Commutative Diagram for DS to RS Proofinitial maps: Theorem initial ds(s) � initial rs(DSmap(s))Several basic lemmas follow from the de�nition of the mapping function:map 1: Lemma DSmap(s)(i):healthy = s:proc(i):healthymap 2: Lemma DSmap(s)(i):proc state = s:proc(i):proc statemap 3: Lemma allowable faults(s; t) � RS:allowable faults(DSmap(s);DSmap(t))map 4: LemmaRS:good values sent(DSmap(s); u; w) = good values sent(s; u;w)map 5: Lemma RS:voted �nal state(DSmap(s);DSmap(t); u; h; i)= voted �nal state(s; t; u; h; i)map 7: Lemma RS:maj working(DSmap(s)) = DS:maj working(s)6.2 The ProofThe proof of the frame commutes theorem involves the expansion of the frame N ds relationand showing that the resulting formula logically implies Nrs(DSmap(s);DSmap(t); u). Webegin with the de�nition of frame N ds:frame N ds(s; t; u) = (9 x; y; z : Nds(s; x; u) ^ Nds(x; y; u) ^ Nds(y; z; u) ^Nds(z; t; u))Since s:phase = compute, Nds(s; x; u) can be rewritten as:Nds(s; x; u) = maj working(x) ^ x:phase = broadcast^ (8 i : x:proc(i):healthy = s:proc(i):healthy ^N cds(s; x; u; i))Substituting for Nds(s; x; u) we obtain 30

s:phase = compute ^ frame N ds(s; t; u)� (9 x; y; z : maj working(x)^ (8 i : x:phase = broadcast^ x:proc(i):healthy = s:proc(i):healthy ^ N cds(s; x; u; i))^Nds(x; y; u)^ Nds(y; z; u) ^Nds(z; t; u))Next, expand N cds, the Nds term for the broadcast phase, and combine universal quanti�ers:s:phase = compute ^ frame N ds(s; t; u)� (9 x; y; z : maj working(x) ^maj working(y)^ (8 i : x:phase = broadcast^ x:proc(i):healthy = s:proc(i):healthy^ (s:proc(i):healthy > 0� x:proc(i):proc state = fc(u; s:proc(i):proc state))^ y:phase = vote^ y:proc(i):healthy = x:proc(i):healthy^ (x:proc(i):healthy > 0� (y:proc(i):proc state = x:proc(i):proc state^ (8 j : x:proc(j):healthy > 0� y:proc(i):mailbox(j) = fs(x:proc(j):proc state)))))^Nds(y; z; u)^ Nds(z; t; u))Simplifying to eliminate x yields:s:phase = compute ^ frame N ds(s; t; u)� (9 y; z : maj working(y)^ (8 i : y:phase = vote^ y:proc(i):healthy = s:proc(i):healthy^ (s:proc(i):healthy > 0� (y:proc(i):proc state = fc(u; s:proc(i):proc state)^ (8 j : s:proc(j):healthy > 0� y:proc(i):mailbox(j) = fs((y:proc(j)):proc state)))))^Nds(y; z; u)^ Nds(z; t; u))Expanding the Nds term for the third phase and simplifying produces:s:phase = compute ^ frame N ds(s; t; u)� (9 z : maj working(z)^ (8 i : z:phase = sync^ z:proc(i):healthy = s:proc(i):healthy^ (s:proc(i):healthy > 0� z:proc(i):proc state = fv(fc(u; s:proc(i):proc state); z:proc(i):mailbox)^ (8 j : s:proc(j):healthy > 0� z:proc(i):mailbox(j) = fs(fc(u; (s:proc(j)):proc state)))))^Nds(z; t; u))Expanding the fourth phase Nds term and simplifying gives:31

s:phase = compute ^ frame N ds(s; t; u)� (9 z : maj working(t)^ (8 i : t:phase = compute^ (s:proc(i):healthy > 0� t:proc(i):proc state = fv(fc(u; s:proc(i):proc state); z:proc(i):mailbox)^ (8 j : s:proc(j):healthy > 0� z:proc(i):mailbox(j) = fs(fc(u; (s:proc(j)):proc state))))^ (t:proc(i):healthy > 0� t:proc(i):healthy = 1 + s:proc(i):healthy)))Letting h(i) = z:proc(i):mailbox,s:phase = compute ^ frame N ds(s; t; u)� maj working(t)^ (9 h : (8 i : t:phase = compute^ (t:proc(i):healthy > 0� t:proc(i):healthy = 1 + s:proc(i):healthy)^ (s:proc(i):healthy > 0� t:proc(i):proc state = fv(fc(u; s:proc(i):proc state); h(i))^ (8 j : s:proc(j):healthy > 0� h(i)(j) = fs(fc(u; (s:proc(j)):proc state))))))This must be shown to logically implyNrs(DSmap(s);DSmap(t); u), which can be rewrit-ten as:(9 h : (8 i : s:proc(i):healthy > 0� (8j : s:proc(j):healthy > 0 � h(i)(j) = fs(fc(u; s:proc(j):proc state)))^ t:proc(i):proc state = fv(fc(u; s:proc(i):proc state); h(i))))^ allowable faults(s; t))The �rst conjunct can be seen to follow by inspection. By expanding allowable faults,allowable faults: function[RSstate;RSstate! bool] =(� s; t : maj working(t)^ (8 i : t(i):healthy > 0 � (t(i)):healthy = 1 + s(i):healthy))the second conjunct can be seen to follow as well. Q.E.D.7 DA Speci�cationThe DA speci�cation performs the same functions as the DS speci�cation; however, explicitconsideration is given to the timing of the system. Every processor of the system has its ownclock and consequently task executions on one processor take place at di�erent times thanon other processors. Nevertheless, the model at this level explicitly takes advantage of thefact that the clocks of the system are synchronized to within a bounded skew �. Therefore,it is necessary to give an overview of clock synchronization theory before elaborating the DAspeci�cation. 32

7.1 Clock Synchronization TheoryIn this section we will discuss the synchronization theory upon which the DA speci�cationdepends. Although the RCP architecture does not depend upon any particular clock synchro-nization algorithm, we have used the speci�cation for the interactive consistency algorithm(ICA) [9, 8] since Ehdm speci�cations for ICA already exist.In this section we show the essential aspects of this theory. The formal de�nition of aclock is fundamental. A clock can be modeled as a function from real time t to clock time T :C(t) = T or as a function from clock time to real time: c(T) = t. Since the ICA theory wasexpressed in terms of the latter, we will also be modeling clocks as functions from clock timeto real time. We must be careful to distinguish between an uncorrected clock and a clockwhich is being resynchronized periodically. We will use the notation c(T) for a uncorrectedclock and rt(i)(T) to represent a synchronized clock during its ith frame.8Good clocks have di�erent drift rates with respect to perfect time. Nevertheless, thisdrift rate is bounded. Thus, we can de�ne a good clock as one whose drift rate is strictlybounded by �=2. A clock is \good", (i.e. a predicate good clock(T0; Tn) is true), betweenclock times T0 and Tn i�:(8 T1; T2 : T0 � T1 � Tn ^ T0 � T2 � Tn� jcp(T1)� cp(T2)� (T1 � T2)j � �2 � jT1 � T2j)The synchronization algorithm is executed once every frame of duration frame time. Thenotation T (i) is used to represent the start of the ith frame, i.e., (T 0 + i � frame time). Thenotation T 2 R(i) means that T falls in the ith frame, i.e.,(9� : 0 � � � frame time ^ T = T (i) +�))During the ith frame the synchronized clock on processor p, rtp, is de�ned by:rtp(i; T) = cp(T + Corr(i)p)where Corr is the cumulative sum of the corrections that have been made to the (logical)clock. It is de�ned by :Corr(i)p = if i > 0 then Corr(i�1)p +�(i�1)pelse initial Corr(p)end ifwhere initial Corr(p) is conveniently equated to zero (i.e. Corr(0)p = 0). The function �(i�1)pis the correction factor for the current frame as computed by the clock synchronizationalgorithm.We now de�ne what is meant by a clock being nonfaulty in the current frame. Thepredicate nonfaulty clock is de�ned as follows:A1: Lemma nonfaulty clock(p; i) = goodclock(p; T (0)+Corr(0)p ; T (i+1)+ Corr(i)p)8This di�ers from the notation, c(i)(T), used in [8].33

Note that in order for a clock to be non-faulty in the current frame it is necessary that ithas been working continuously from time 0.9The clock synchronization theory provides two important properties about the clocksynchronization algorithm, namely that the skew between good clocks is bounded and thatthe correction to a good clock is always bounded. The maximum skew is denoted by � andthe maximum correction is denoted by �. More formally,Clock Synchronization Conditions: For all nonfaulty clocks p and q:S1: 8T 2 R(i) : jrt(i)p (T)� rt(i)q (T)j < �S2: jCorr(i+1)p � Corr(i)p j < �The value of � is determined by several key parameters of the synchronization system:�; �; �0;m, nrep listed in table 2. The formal de�nition of � has already been given. Theparameter meaning� upper bound on drift rate of a good clock� upper bound on error in reading another processor's clock�0 upper bound on initial skewm maximum number of faulty clocks toleratednrep number of clocks in systemTable 2: Meaning of Synchronization Parametersparameter � is a bound on the error in reading another processor's clock. The synchroniza-tion algorithm requires that every processor in the system obtain an estimate of its skewrelative to every other clock in the system. The notation �(i)qp is used to represent the skewbetween clocks q and p during the ith frame as perceived by p. Thus, the real time at whichp's clock reads T0 +�(i)qp should be very close to the real time that q's clock reads T0. Thisis constrained by an axiom to be less than �:Axiom If conditions S1 and S2 hold throughout the ith frame, thennonfaulty clock(p; i) ^ nonfaulty clock(q; i)� j�(i)qp j � sync time^ (9 T0 : T0 2 S(i) ^ jrt(i)p (T0 +�(i)qp)� rt(i)q (T0)j < �)The amount of time reserved for executing the clock synchronization algorithm is denotedby the constant sync time.The third parameter, �0, is constrained as follows:A0: Axiom jrt(0)p (0)� rt(0)q (0)j < �09This is a limitation not of the operating system, but of existing, mechanically veri�ed fault-tolerant clocksynchronization theory. Future work will concentrate on how to make clock synchronization robust in thepresence of transient faults. 34

Thus, �0 bounds the initial clock skew.The property that the ICA clock synchronization algorithm meets the two synchroniza-tion conditions S1 and S2 was proved in [8]. These were named Theorem 1 and Theorem 2:formally as:Theorem 1: TheoremS1A(i) � (8 p; q : (8 T :nonfaulty clock(p; i) ^ nonfaulty clock(q; i) ^ T 2 R(i)� jrt(i)p (T)� rt(i)q (T)j � �)Theorem 2: Theorem jCorr(i+1)p � Corr(i)p j < �where the premise for Theorem 1, S1A, is de�ned by:(�i : (8r : (m+ 1 <= r and r <= n) � nonfaulty clock(r; i)))and where m is equal to the maximum number of faulty processors.We have used the following equivalent but more convenient premise: S1A : function[period!bool] == (� i : enough clocks(i)).10 whereenough clocks: function[period! bool] =(� i : 3 � num good clocks(i; nrep) > 2 � nrep)and num good clocks: Recursive function[period; nat! nat] =(� i; k : if k = 0 _ k > nrepthen 0elsif nonfaulty clock(k; i)then 1 + num good clocks(i; k � 1)else num good clocks(i; k � 1)end if) by num measureThe theorems proved in [8] also depend upon the following axioms not mentioned above.A2 aux: Axiom �(i)pp = 0C0: Axiom m < nrep ^m � nrep� num good clocks(i; nrep)C1: Axiom frame time � 3 � sync timeC2: Axiom sync time � �C3: Axiom � � �C4: Axiom � � � + �+ �2 � sync timeC5: Axiom � � �0 + � � frame timeC6: Axiom � � 2 � (�+ � � sync time) + 2 �m ��=(nrep�m)+ nrep � � � frame time=(nrep�m) + � ��+ nrep � � � �=(nrep�m)10Note that this form also subsumes axiom C0 below.35

With the S1A premise expanded, the main synchronization theorem becomes:sync thm: Theorem enough clocks(i)� (8p; q : (8T : T 2 R(i)^nonfaulty clock(p; i)^nonfaulty clock(q; i)� jrt(i)p (T)� rt(i)q (T)j � �))The proof that DA implements DS depends crucially upon this theorem.7.2 The DA FormalizationNow that a clock synchronization theory is at our disposal, the DA model can be speci�ed.Two new �elds are added to the state vector associated with each processor: lclock andcum delta:da proc state: Type = Record healthy : nat;proc state : Pstate;mailbox : MBvec;lclock : logical clocktime;cum delta : numberend recordThe complete DAstate is:DAstate: Type = Record phase : phases;sync period : nat;proc : da proc arrayend recordwhere da proc state is de�ned by:da proc array: Type = array [processors] of da proc stateThe sync period �eld holds the current frame of the system. Note this does not represent theframe counter on any particular processor, but rather the ideal, unbounded frame counter.The lclock �eld of a DAstate stores the current value of the processor's local clock. Thereal-time corresponding to this clock time can be found through use of the auxiliary functionda rt. da rt: function[DAstate; processors; logical clocktime! realtime] =(� da; p; T : cp(T + da:proc(p):cum delta)This function corresponds to the rt function of the clock synchronization theory. Thus,da rt(s,p,T) represents processor p's synchronized clock. Given a clock time T in the currentframe (s.sync period), da rt returns the real-time that processor p's clock reads T . The currentvalue of the cumulative correction is stored in the �eld cum delta.Every frame the clock synchronization algorithm is executed, and �(i)p is added to cum delta.Note that this corresponds to the Corr function of the clock synchronization theory. Therelationship between cp, da rt, and cum delta is illustrated in �gure 9.36

6?
�����������������

����6
-

�������������������,,,,,....................................
..................... � cum deltada rtp(T)real time

clock time (T)
cp(T)

Figure 9: Relationship between cp and da rtSince the original ICA clock theory was not cast into the state-machine framework usedin this work, it is necessary to show that the the da rt function is equivalent to the rtfunction of the clock synchronization theory. The �rst step is to equate the period of theclock synchronization with the length of a frame in the operating system. Since the lengthof the period in the clock theory is a parameter of the theory, this is accomplished by settingit equal to frame length. Similarly, the execution time of the synchronization algorithm is aparameter of the clock theory which is set equal to sync period.11 The clock synchronizationtheory also requires that a constraint be placed on the duration of the sync phase:AXIOM: duration(sync) >= sync periodThe next step is to equate the clocks of the state-machine with the clocks in the sync theory.This is done by proving the following lemma:da rt lem: Lemma reachable(da) ^ nonfaulty clock(p; da:sync period)� da rt(da; p; T) = rt(da:sync period)p (T)This lemma follows from the fact that in every period (during the sync phase) the cum delta�eld is incremented by �i:t:proc(i):cum delta = s:proc(i):cum delta+�s:sync periodiThe algorithm that is speci�ed in the clock theory uses �i as its correction factor each frame.The exact same correction factor is used in the DA model. Thus, the RCP system executes11These are named R and S in [9, 8]. However, these names con
icted with their use in [1].37

the same algorithm as speci�ed in the clock theory, and cum delta will always be equal toCorr. Thus, rtp = da rtp.The speci�cation of time-critical behavior in the DA model is accomplished using theda rt function. For example, the broadcast received function is expressed in terms of da rt:broadcast received: function[DAstate;DAstate; processors! bool] =(� s; t; q : (8 p :(s:proc(p):healthy > 0^ da rt(s; p; s:proc(p):lclock) +max comm delay� da rt(t; q; t:proc(q):lclock)� t:proc(q):mailbox(p) = s:proc(p):mailbox(p)Thus, the data in the incoming bin p on processor q is only de�ned to be equal to the valuebroadcast by p (i.e. s:proc(p):mailbox(p)) when the real time on the receiving end (i.e.da rt(t; q; t:proc(q):lclock) is greater than da rt(s; p; s:proc(p):lclock) plus max comm delay.This speci�cation anticipates the design of a communications system that can deliver amessage in a bounded amount of time, in particular within max comm delay units of time.In the DA level there is no single transition that covers the entire frame. There is only atransition relation for a phase. The Nda relation is:Nda: function[DAstate;DAstate; inputs! bool] =(� s; t; u : enough hardware(t) ^ t:phase = next phase(s:phase)^ (8 i : if s:phase = syncthen N sda(s; t; i)else t:proc(i):healthy = s:proc(i):healthy^ t:proc(i):cum delta = s:proc(i):cum delta^ t:sync period = s:sync period^ (nonfaulty clock(i; s:sync period)� clock advanced(s:proc(i):lclock; t:proc(i):lclock; duration(s:phase)))^ (s:phase = compute � N cda(s; t; u; i))^ (s:phase = broadcast � N bda(s; t; i))^ (s:phase = vote � N vda(s; t; i))end if))Note that the transition to a new state is only valid when the enough hardware function holdsin the next state. This function is de�ned as follows:enough hardware: function[DAstate! bool] =(� t : maj working(t) ^ enough clocks(t:sync period))maj working is de�ned identically in RS, DS, and DA. Its de�nition is presented in section 3.3.The de�nition of enough clocks appears in section 7.1.As in the DS level, the state transition relation Nda is de�ned in terms of four sub-relations, each of which applies to a particular phase type. These are called N cda, N bda, N vdaand N sda.The N cda sub-relation is: 38

N cda: function[DAstate;DAstate; inputs; processors! bool] =(� s; t; u; i :s:proc(i):healthy > 0� t:proc(i):proc state = fc(u; s:proc(i):proc state)^ t:proc(i):mailbox(i) = fs(fc(u; s:proc(i):proc state))Just as in the corresponding DS relation, the proc state �eld is updated with the results ofthe computation, fc(u; s:proc(i):proc state). Also, the mailbox is loaded with the subset ofthe results to be broadcast as de�ned by the function fs. Unlike the DS model, the localclock time is changed in the new state. This is accomplished by the predicate clock advanced,which is not based on a simple incrementation operation because the number of clock cyclesconsumed by an instruction streamwill exhibit a small amount of variation on real processors.The function clock advanced accounts for this variability, meaning the start of the next phaseis not deterministically related to the start time of the current phase.�: numberclock advanced: function[logical clocktime; logical clocktime; number! bool] =(� X; Y;D : X +D � (1� �) � Y ^ Y � X +D � (1 + �))where � represents the maximum rate at which one processor's execution time over a phasecan vary from the nominal amount given by the duration function. � is intended to be anonnegative fractional value, 0 � � < 1. The nominal amount of time spent in each phaseis speci�ed by a function named duration:duration: function[phases! logical clocktime]However, the actual amount of clock time spent in a phase is not �xed, but can vary withinlimits. For example, the actual duration of the compute phase can be anything from (1 ��) � duration(compute) to (1 + �) � duration(compute). The value of � is a parameter of thespeci�cation and can be set to any desired value. However, there are some constraints onthe implementation that are expressed in terms of �:broadcast duration: Axiomduration(broadcast)�(1��2)�2���duration(compute)���duration(broadcast))�� � max comm delaybroadcast duration2: Axiomduration(broadcast)�2�� �duration(compute)�� �duration(broadcast) >= 0pos durations: Axiom0 <= (1 � �) � duration(compute) ^ 0 <= (1� �) � duration(broadcast)^ 0 <= (1� �) � duration(vote) ^ 0 <= (1� �) � duration(sync)all durations: Axiom(1 + �) � duration(compute) + (1 + �) � duration(broadcast)� frame time 39

The constants � and � are drawn from the clock synchronization theory, as explained insection 7.1.There may be many possible causes of the variation in execution times on di�erentprocessors. The asynchronous interface between a processor and its memory can lead todi�erent execution times between two processors even when they execute exactly the sameinstructions on exactly the same data. Another possible cause of di�erent execution timescould be the use of di�erent schedules on di�erent processors.The N bda sub-relation is:N bda: function[DAstate;DAstate; processors! bool] =(� s; t; i : s:proc(i):healthy > 0� t:proc(i):proc state = s:proc(i):proc state^ broadcast received(s; t; i))As in the corresponding DS relation, the proc state �eld remains unchanged and the broad-cast received relation must hold. When it holds, all the nonfaulty processors receive thevalues sent by other nonfaulty processors. However, this is now contingent upon certainconstraints on the times that things happen.The N vda sub-relation is:N vda: function[DAstate;DAstate; processors! bool] =(� s; t; i : s:proc(i):healthy > 0� t:proc(i):mailbox = s:proc(i):mailbox^ t:proc(i):proc state = fv(s:proc(i):proc state; s:proc(i):mailbox))As before, the mailbox �eld remains unchanged and the local processor state is updated withthe result of voting the values broadcast by the other processors.The N sda sub-relation is:N sda: function[DAstate;DAstate; processors! bool] =(� s; t; i : (s:proc(i):healthy > 0� t:proc(i):proc state = s:proc(i):proc state)^ (t:proc(i):healthy > 0� t:proc(i):healthy = 1 + s:proc(i):healthy^ nonfaulty clock(i; t:sync period))^ t:sync period = 1 + s:sync period^ (nonfaulty clock(i; s:sync period)� t:proc(i):lclock = (1 + s:sync period) � frame time^t:proc(i):cum delta = s:proc(i):cum delta+�s:sync periodi))During the sync phase, the processor state remains unchanged. As in the DS speci�cation,the healthy �eld is incremented by one. Unlike the DS model, the local clock time is changedin the new state. For this sub-relation, the clock is not advanced in accordance with thefunction clock advanced, because this phase is terminated by a clock interrupt. At a pre-determined local clock time, the clock interrupt �res and the next frame is initiated. Thespeci�cation requires that the interrupts �re at clock times that are integral multiples of theframe length, frame time. 40

In addition to requirements conditioned on having a nonfaulty processor, the DA speci-�cations are concerned with having a nonfaulty clock as well. It is assumed that the clockis an independent piece of hardware whose faults can be isolated from those of the corre-sponding processor. Although some implementations of a fault-tolerant architecture such asRCP could execute part of the clock synchronization function in software, thereby makingclock faults and processor faults mutually dependent, we assume that RCP implementationswill have a dedicated hardware clock synchronization function. This means that a clock cancontinue to function properly during a transient fault period on its adjoining processor. Theconverse is not true, however. Since the software executing on a processor depends on theclock to properly schedule events, a nonfaulty processor having a faulty clock may produceerrors. Therefore, a one-way fault dependency exists. ProcessorClock Function Faulty Recovering WorkingFaulty Voting N N NClock sync N N NNonfaulty Voting N N YClock sync Y Y YFigure 10: Relationship of clock and processor faults.Figure 10 summarizes the interaction between clock faults and processor faults. It showsfor each combination of fault mode whether a processor can make a sound contribution tovoting the state variables and whether a clock can properly contribute to clock synchroniza-tion. These conditions have been encoded in the various DA speci�cations. In particular,the relation N sda shown above requires that for a processor to be nonfaulty in the next frameit must have a nonfaulty clock through the end of that frame. Recall that the de�nition ofnonfaulty clock requires that it be continuously nonfaulty from time zero.12The predicate initial da puts forth the conditions for a valid initial state. The initial phaseis set to compute and the initial sync period is set to zero. Each element of the DA state arrayhas its healthy �eld equal to recovery period and its proc state �eld equal to initial proc state.initial da: function[DAstate! bool] =(� s : s:phase = compute ^ s:sync period = 0^ (8 i : s:proc(i):healthy = recovery period^ s:proc(i):proc state = initial proc state^ s:proc(i):cum delta = 0^ s:proc(i):lclock = 0 ^ nonfaulty clock(i; 0)))As before, the constant recovery period is the number of frames required to fully recover aprocessor's state after experiencing a transient fault. By initializing the healthy �elds to this12This does not represent a de�ciency in the design of the DA model but rather is a limitation imposedby the existing, mechanically veri�ed clock synchronization algorithm. Future work will concentrate onliberating the clock synchronization property from this restriction.41

value, we are starting the system with all processors working. Note that the mailbox �eldsare not initialized; any mailbox values can appear in a valid initial DAstate.8 DA to DS Proof8.1 DA to DS MappingThe DA to DS mapping function, DAmap, is de�ned as:DAmap: function[DAstate! DSstate] =(� da : ss update(da; nrep) with [(phase) := da:phase])where ss update is given by:ss update: Recursive function[DAstate; nat! DSstate] =(� da; k : if (k = 0) _ (k > nrep)then ds0else ss update(da; k � 1)with [(proc)(k) := dsproc0with [(healthy) := da:proc(k):healthy;(proc state) := da:proc(k):proc state;(mailbox) := da:proc(k):mailbox]]end if) by da measureThus, the lclock, cum delta, and sync period �elds are not mapped (i.e., are abstracted away)and all of the other �elds are mapped identically. To establish that DA implements DS,the commutativity diagram of �gure 11 must be shown to commute. To establish that the66 -
- DAmapDAmap Nda(s; t; u) ts

Nds(s0; t0; u) t0s0
Figure 11: Commutative Diagram for DA to DS Proofdiagram commutes, the following formulas must be proved:phase commutes: Theorem reachable(s)^Nda(s; t; u) � Nds(DAmap(s);DAmap(t); u)initial maps: Theorem initial da(s) � initial ds(DAmap(s))42

The lemmas below directly follow from the de�nition of the mapping.map 1: Lemma DAmap(s):proc(i):healthy = s:proc(i):healthymap 2: Lemma DAmap(s):proc(i):proc state = s:proc(i):proc statemap 3: Lemma DAmap(s):phase = s:phasemap 4: Lemma DAmap(s):proc(i):mailbox = s:proc(i):mailboxmap 7: Lemma DS:maj working(DAmap(s)) = DA:maj working(s)8.2 The ProofThe phase commutes theorem must be shown to hold for all four phases. Thus, the proof isdecomposed into four separate cases, each of which is handled by a lemma of the form:phase com X : Lemmas:phase = X ^ Nda(s; t; u) � Nds(DAmap(s);DAmap(t); u)where X is any one of fcompute, broadcast, vote, syncg. The proof of this theorem requiresthe expansion of the Nda relation and showing that the resulting formula logically impliesNds(DAmap(s);DAmap(t); u).8.2.1 Decomposition SchemeThe proof of each lemma phase com X is facilitated by using a common, general scheme foreach phase that further decomposes the proof by means of four subordinate lemmas. Thegeneral form of these lemmas is as follows:Lemma 1: s:phase = X ^Nda(s; t; u) � (8 i : NXda(s; t; i))Lemma 2: s:phase = X ^NXda(s; t; i) � NXds (DAmap(s);DAmap(t); i)Lemma 3: s:phase = X ^ DS:maj working(tt) ^ (8 i : NXds (ss; tt; i)) �Nds(ss; tt; u)Lemma 4: s:phase = X ^Nda(s; t; u) � DS:maj working(DAmap(t))A few di�erences exist among the lemmas for the four phases, but they adhere to this schemefairly closely. The phase com X lemma follows by chaining the four lemmas together:Nda(s; t; u) � (8 i : NXda(s; t; i)) �(8 i : NXds(DAmap(s);DAmap(t); i)) � Nds(DAmap(s);DAmap(t); u)In three of the four cases above, proofs for the lemmas are elementary. The proof ofLemma 1 follows directly from the de�nition of Nda. Lemma 3 follows directly from thede�nition of Nds. Lemma 4 follows from the de�nition of Nda, enough hardware and the basicmapping lemmas.Futhermore, in three of the four phases, the proof of Lemma 2 is straightforward. Forall but the broadcast phase, Lemma 2 follows from the de�nition of NXds , NXda, and the basicmapping lemmas. 43

However, in the broadcast phase, Lemma 2 from the scheme above, which is namedcom broadcast 2, is a much deeper theorem. The broadcast phase is where the e�ects ofasynchrony are felt; we must show that interprocessor communications are properly receivedin the presence of asynchronously operating processors. Without clock synchronization wewould be unable to assert that broadcast data is received. Hence the need to invoke clocksynchronization theory and its attendant reasoning over inequalities of time.8.2.2 Proof of com broadcast 2The lemma com broadcast 2 is the most di�cult of the four lemmas for the broadcast phase.It follows from the de�nition of N bds, N bda, the basic mapping lemmas and a fairly di�cultlemma, com broadcast 5:com broadcast 5: Lemmareachable(s) ^ Nda(s; t; u) ^ s:phase = broadcast^ s:proc(i):healthy > 0 ^ broadcast received(s; t; i)� broadcast received(DAmap(s);DAmap(t); i)This lemma deals with the main di�erence between the DA level and the DS level|thetiming constraint on the function broadcast received:broadcast received: function[DAstate;DAstate; processors! bool] =(� s; t; q : (8 p :(s:proc(p):healthy > 0^da rt(s; p; (s:proc(p):lclock)+max comm delay � da rt(t; q; t:proc(q):lclock)� t:proc(q):mailbox(p) = s:proc(p):mailbox(p)The timing constraintda rt(s; p; s:proc(p):lclock) +max comm delay � da rt(t; q; t:proc(q):lclock)must be discharged in order to show that the DA level implements the DS level. The followinglemma is instrumental to this goal.ELT: Lemma T2 � T1+ bb ^ (T1 � T 0) ^ (bb � T 0) ^ T2 2 R(sp) ^ T1 2 R(sp)^ nonfaulty clock(p; sp) ^ nonfaulty clock(q; sp) ^ enough clocks(sp)� rt(sp)p (T2) � rt(sp)q (T1) + (1 � �2) � jbbj � �This lemma establishes an important property of timed events in the presence of a fault-tolerant clock synchronization algorithm and is proved in the next subsection. Suppose thaton processor q an event occurs at T1 according to its own clock and another event occurs onprocessor p at time T2 according to its own clock. Then, assuming that the clock times fallwithin the current frame and the clocks are working and the system still is safe (i.e. morethan two thirds of the clocks are non-faulty), then the following is true about the real timesof the events: rt(sp)p (T2) � rt(sp)q (T1) + (1 � �2) � jbbj � �44

where bb = T2 � T1, T1 = s:proc(p):lclock and T2 = t:proc(q):lclock.If we apply this lemma to the broadcast phase, letting T1 be the time that the senderloads his outgoing mailbox bin and T2 is the earliest time that the receivers can read theirmailboxes (i.e. at the start of the vote phase), we know that these events are separated intime by more than (1� �2) � jbbj � �.In this case bb is approximately equal to duration(broadcast). However, since there maybe some variations in the time spent in the compute and broadcast phases on di�erentprocessors (i.e. they can drift from the nominal value at a rate less than �), the analysis is alittle tricky. First consider the situation where processor q is sending a message to processorp during its broadcast phase. Let r be the state at the start of the compute phase, s be thestate at the start of the broadcast phase and t be the state at the start of the vote phase:r compute�! s broadcast�! tThen, letRq = the clock time at the start of the compute phase on processor qSq = the clock time at the start of the broadcast phase on processor qTq = the clock time at the start of the vote phase on processor qRp = the clock time at the start of the compute phase on processor pSp = the clock time at the start of the broadcast phase on processor pTp = the clock time at the start of the vote phase on processor pThis is illustrated in �gure 12. By the de�nition of clock advanced, the following can be
~. --messagebroadcastcompute broadcastcomputeprocessor q:processor p: Rq Sq Tq

Rp Sp TpFigure 12: Relationship between phase times on di�erent processorsestablished: (9 pdurc; pdurb; qdurc; qdurb :near(pdurc; compute) ^ near(pdurb; broadcast)^ near(qdurc; compute) ^ near(qdurb; broadcast)^ Rp = Rq 45

^ Sq = Rq+ qdurc^ Tp = Sq� qdurc+ pdurc+ pdurb))where near(dur,ph) is given bynear(dur,ph) = (1� �) � duration(ph) � dur � (1 + �) � duration(ph))This result depends upon a critical invariant of the system:(8 p; q : s:phase = compute ^nonfaulty clock(p; s:sync period) ^ nonfaulty clock(q; s:sync period)� s:proc(p):lclock = s:proc(q):lclock)given that the state s is reachable(s). This invariant exists in the system because of theuse of an interrupt timer to initiate the start of a frame on each of the processors at thepre-determined times i� frame time. Using the de�nition of R(i) and the axioms pos durationsand all durations, we obtain:nonfaulty clock(p; i) ^ nonfaulty clock(q; i)� Sq 2 R(i) ^ Tp 2 R(i)^ Tp � Sq+ duration(broadcast)� 2 � � � duration(compute)� � � duration(broadcast)where i is the current synchronization period (i.e. i = r.sync period = s.sync period =t.sync period). We now have a relationship between the clock time that the message wassent and the clock time that it was received in a form appropriate for application of the ELTtheorem. In other words, T2 = Tp; T1 = Sq and bb = pdurc � qdurc + pdurb. Thus, wecan convert the relationship between the events expressed in clock times to a relationshipbetween the real times of these events:rt(i)p (Tp) � rt(i)q (Sq) + (1� �2) � jduration(broadcast)� Epsij � �where Epsi = 2�� �duration(compute)+� �duration(broadcast). Using the broadcast durationimplementation axiom:broadcast duration: Axiomduration(broadcast) � (1 � �2)� 2 � � � duration(compute)� � � duration(broadcast))� � � max comm delaywe have:rt(i)p (Tp) � rt(i)q (Sq) +max comm delayUsing the da rt lem lemma:da rt(t; q;Tq) >= da rt(s; p;Sq) +max comm delayThis will discharge the premise of broadcast received. Thus,46

com broadcast 5: Lemmareachable(s) ^ Nda(s; t; u) ^ s:phase = broadcast^ s:proc(p):healthy > 0 ^ broadcast received(s; t; p)� broadcast received(DAmap(s);DAmap(t); p)Of course there are several technicalities such as the reachable(da) premise that must be dis-charged in order to apply the da rt lem lemma and the other state invariants and establishingthat s:proc(p):healthy > 0 � nonfaulty clock(p; s:sync period).Proof of ELT Lemma: In this section we prove,Lemma 1 (earliest later time Lemma) T2 = T1 + BB^ (T1 � T 0) ^ (BB � T 0) ^ nonfaulty clock(p; i) ^ nonfaulty clock(q; i)^ enough clocks(i) ^ T2 2 R(i) ^ T1 2 R(i)� rt(i)p (T2) � rt(i)q (T1) + (1 � �2) � jBBj � �from which the ELT lemma immediately follows.Proof. This lemma depends primarily upon the de�nition of a good clock and the synchro-nization theorem (i.e. sync thm). The good clock de�nition yields:goodclock(q; T 0; T1 + BB) ^ (T1 � T 0) ^ (BB � T 0)� (1� �2) � jBBj � cq(T1 + BB)� cq(T1)^ cq(T1 + BB) � cq(T1) � (1 + �2) � jBBjNote that the de�nition of a good clock is de�ned in terms of the uncorrected clocks, cp(T).Using the de�nition of rt, we can rewrite the �rst formula as:Lemma goodclock(q; T 0; T1 + Corr(i)q + BB)^ (T1 � T 0) ^ (T1 + Corr(i)q � T 0) ^ (BB � T 0)� (1� �2) � jBBj � rt(i)q (T1 + BB)� rt(i)q (T1)^ rt(i)q (T1 + BB)� rt(i)q (T1) � (1 + �2) � jBBjand obtain a formula in terms of the function rt.The sync thm theorem gives us:enough clocks(i) ^ nonfaulty clock(p; i) ^ nonfaulty clock(q; i) ^ T 2 R(i)� �� � rt(i)p (T)� rt(i)q (T) � �Combining the previous two formulas and substituting T2 for T in sync thm, we obtain:T2 = T1 + BB ^ (T1 � T 0) ^ (T1 + Corr(i)q � T 0) ^ (BB � T 0) ^ T2 2 R(i)^enough clocks(i)^goodclock(q; T 0; T1Corr(i)q +BB)^nonfaulty clock(p; i)^nonfaulty clock(q; i)� rt(i)p (T2) � rt(i)q (T1) + (1� �2) � jBBj � �From the de�nition of nonfaulty and goodclock, we have:T1 + BB � T (i+1) ^ nonfaulty clock(q; i)� goodclock(q; T 0; T1 + Corr(i)q + BB)47

Using these last two results we have:T2 = T1 + BB ^ T2 � T (i+1) ^ (T1 � T 0) ^ (T1 + Corr(i)q � T 0) ^ (BB � T 0)^ enough clocks(i) ^ nonfaulty clock(p; i) ^ nonfaulty clock(q; i) ^ T2 2 R(i)� rt(i)p (T2) � rt(i)q (T1) + (1� �2) � jBBj � �Then from the de�nition of R(i), T (i) and the fact that Corr(0)q = 0, we haveft11: Lemma T2 = T1 + BB ^ (T1 � T 0) ^ (T1 + Corr(i)q � T 0) ^ (BB � T 0)^ enough clocks(i) ^ nonfaulty clock(p; i) ^ nonfaulty clock(q; i) ^ T2 2 R(i)� rt(i)p (T2) � rt(i)q (T1) + (1� �2) � jBBj � �Using the adj always pos theorem from [8], we obtainft12: Lemma T1 2 R(i) � (T1 + Corr(i)q � T 0)The key lemma follows immediately from the last two formulas, (ft11 and ft12).9 Implementation ConsiderationsAlthough many RCP design decisions have yet to be made, there are a number of implemen-tation issues that need to be considered early. Some of these have emerged as consequencesof the formalization e�ort completed in Phase 2. Others are the result of preliminary investi-gations into the needs of implementations that can satisfy the RCP speci�cations. Followingis a discussion of these issues and available options.9.1 Restrictions Imposed by the DA ModelRecall that the DA extended state machine model described in section 2.4 recognized fourdi�erent classes of state transition: L, B, R, C. Although each is used for a di�erent phaseof the frame, the transition types were introduced because operation restrictions must beimposed on implementations to correctly realize the DA speci�cations. Failure to satisfythese restrictions can render an implementation at odds with the underlying execution model,where shared data objects are subject to the problems of concurrency. The set of constraintson the DA model's implementation concerns possible concurrent accesses to the mailboxes.While a broadcast send operation is in progress, the receivers' mailbox values are unde-�ned. If the operation is allowed su�cient time to complete, the mailbox values will matchthe original values sent. If insu�cient time is allowed, or a broadcast operation is begunimmediately following the current one, the �nal mailbox value cannot be assured. Further-more, we make the additional restriction that all other uses of the mailbox be limited toread-only accesses. This provides a simple su�cient condition for noninterfering use of themailboxes, thereby avoiding more complex mutual exclusion restrictions.Operation Restrictions. Let s and t be successive DA states, i be the proces-sor with the earliest value of ci(s(i):lclock), and j be the processor with the latest48

value of cj(t(j):lclock). If s corresponds to a broadcast (B) operation, all proces-sors must have completed the previous operation of type R by time ci(s(i):lclock),and the next operation of type B can begin no earlier than time cj(t(j):lclock).No processor may write to its mailbox during an operation of type B or R.By introducing a prescribed discipline on the use of mailboxes, we ensure that the axiomdescribing the net e�ect of broadcast communication can be legitimately used in the DAproof. Although the restrictions are expressed in terms of real time inequalities over allprocessors' clocks, it is possible to derive su�cient conditions that satisfy the restrictions andcan be established from local processor speci�cations only, assuming a clock synchronizationmechanism is in place.9.2 Processor SchedulingThe DAmodel of the RCP deals with the timing and coordination of the replicated processorsin a fairly complete manner. The model de�nes in detail the functionality of the system withregard to the activities that are necessary to ensure its fault-masking and transient recoverycapability. Nevertheless, the delineation of the task execution process on each local processorhas not been elaborated in any more detail than in the US model. This was done deliberatelyin order to obtain as general a speci�cation as possible. Thus, the 4-level hierarchy presentedin this paper could be further re�ned into a set of entirely di�erent kinds of implementations.They could di�er drastically in the types of task scheduling that are utilized as well as thetype of hardware or software used.Nevertheless, one aspect of scheduling needs to be carefully controlled, namely the basicframe structure. The RCP speci�cations were developed with a very crisp execution modelin mind regarding the basic timing of a frame and its major parts. We assume the existenceof one or more nonmaskable hardware interrupts, triggered by the clock subsystem, that areused to e�ect the transition from one frame to the next and one major phase to the next.As a minimum, the following transitions must be triggered by timer interrupts or an equallystrong hardware mechanism.� Start of frame. The last portion of a frame is reserved for clock synchronizationactivities. This includes not only executing the clock synchronization functions, butalso reserving some dead time to be sacri�ced when clock adjustments cause local clocktime discontinuities. An interrupt is set to �re at the proper value of clock time sothat all processors begin the new frame with the same local clock reading.� Beginning of vote phase. After waiting for the completion of broadcast communi-cation from other processors, the vote phase is begun to selectively restore portions ofthe computation state. Also needing to be recovered are any control state variablesused by the operating system. If a transient fault occurs, recovery cannot begin untilthe control state is �rst restored through voting. However, a processor operating aftera transient fault may be executing with a corrupted memory state. The only way toensure that corrupted memory does not prevent the eventual recovery of control stateinformation is to force the vote to happen through a nonmaskable interrupt.49

The use of timer interrupts are highly desirable in other situations, but those listed aboveare considered essential.Scheduling of applications tasks is an area where the implementation retains some
ex-ibility owing to our use of a general fault-tolerant computing model in the US and RSspeci�cations. Often it is considered desirable to achieve some type of schedule diversityacross processors as a means of gaining more transient fault immunity. A limited way ofaccomplishing this is available under the current RCP design. Since the speci�cations onlystate what must be true after all tasks have been executed within a frame, it is possible tojuggle the order of tasks within each frame to implement diversity. For example, if N tasksare scheduled in a particular frame, each processor may execute them in a di�erent orderup to the limits of data dependency among tasks. It is also possible to introduce di�erentspreads of slack time, dummy tasks, etc. to achieve similar e�ects.9.3 Hardware Protection FeaturesCorrect recovery of state information after a transient fault has been formalized in the RSto US proof. Transient recovery of state information occurs gradually, one cell at a time.Consequently, depending on the voting pattern used, some tasks will be executing in thepresence of erroneous state information. Implicit in the RS speci�cations is that computationof task outputs is not subject to interference by other tasks executing with erroneous datainputs. In the speci�cations, this is due simply to the use of a functional representation ofthe e�ects of task execution.Nonetheless, in a real processor a program in execution can interfere with another unlesshardware protection mechanisms are in place. To see why this is so, suppose, for instance,that task T1 is followed by task T2 in a particular frame and neither's output is voted duringthat frame. Suppose further that in the transient fault recovery scheme, T2's inputs comefrom recently voted cells while T1's do not. Thus, we expect T2's cell to be recovered after thisframe. After a transient fault, T1 may be executing instructions on erroneous data, possiblyoverwriting recovered information such as that required by T2. This would invalidate ourassumption that T2's state is recovered at the end of the frame.In a similar manner, interference can be caused in the time domain as well as the datadomain. In the example above, if T1's erroneous input causes it to run longer than its upperexecution time bound, T2 may not get to execute in this frame. Again, this would result inour assumptions about T2's output being invalid. Therefore, hardware protection featuresare required to prevent both kinds of interference in a system that attempts to recover stateinformation selectively.There are several well-known hardware techniques for providing this type of protection.� Memory protection. Hardware write protection devices are found on many moderncomputer architectures. What RCP requires is less than a full-blown memory manage-ment unit (MMU). All that is necessary is to be able to prevent a task in executionfrom writing into memory areas for which the operating system has not given explicitwrite permission. The ability to give a task write access to a small set of physicalmemory regions is su�cient. Generating hardware exceptions such as traps on illicitwrite attempts is desirable but not essential.50

� Watch-dog timers. Timer interrupts or special-purpose timing logic will be requiredto prevent a task from consuming more than its allotted amount of execution time.When a watch-dog timer is triggered, the operating system need only dispatch thenext task on the schedule. The actual hardware used to carry out this timing functionneeds to have adequate resolution and be distinct from the timer interrupts used tosignal the end-of-frame and start-of-voting events.� Privileged Operating Modes. To protect the protection mechanisms, it is usuallynecessary for a processor to have at least one privileged execution domain. Processorstypically provide at least a user domain and a (privileged) supervisor domain to im-plement conventional operating system designs. In RCP, we need these features so thetasks cannot accidentally change or disable the memory write protection or watch-dogtimer functions. There may be other uses for privileged mode as well.It is important to realize that use of these features may be obviated in special cases. Ifsu�ciently frequent voting is used, for example, it may not be necessary to provide thesefeatures as long as a task is always executing with valid data as input.9.4 Voting MechanismsExact-match voting of state information exchanged among processors is usually envisionedas applying the majority function to mailbox values. Note, however, that the voting functionfv, described in section 3.3, is unspeci�ed and need not be based on the majority operation.Other types of voting may be used provided that the transient recovery axioms of section 3.5.2are still true.A desirable alternative to majority voting is plurality voting. If the values subject tovoting are fa; a; b; cg, for example, a majority does not exist, but a plurality does, namelyfa; ag. The reason this can be valuable is that during a massive transient fault that a�ectsmore than a majority of processors, the Maximum Fault Assumption no longer holds andtransient fault recovery is not assured by the proofs previously described. However, thelikelihood is that the a�ected processors will not exhibit exactly the same errors. If aminority of processors is still working, it is likely that the values produced by the replicatedprocessors will appear something like the example fa; a; b; cg. Hence, plurality voting has agood chance of recovering the correct state in spite of the absence of a working majority.This problem has been studied by Miner and Caldwell [26]. They showed that thesubstitution of plurality voting for majority voting can be used to produce identical resultsas long as the Maximum Fault Assumption holds:maj exists(s) � maj(s) = plur(s)By using an implementation based on plurality voting, we enjoy the same provable behaviorwhen the Maximum Fault Assumption holds, and we enjoy added transient fault immunityin the rare case that it is violated. All that is necessary to achieve this is to show that thechoice of function for fv meets the requirements of the transient recovery axioms.51

10 Future WorkThere are four main areas where further work may be pro�table.1. Development of a still more detailed speci�cation and veri�cation that it meets the DAspeci�cation.2. Development of task scheduling/voting strategies that satisfy the axioms of the USmodel.3. More detailed speci�cation of the behavior of the actuator outputs.4. Development of a detailed reliability model.10.1 Further Re�nementAlthough the DA speci�cation is a fairly detailed design of the system-wide behavior of theRCP, there is very little implementation detail about what occurs locally on each processor.The next level of the speci�cation hierarchy, the local processor LP speci�cation will de�nethe data structures and algorithms to be implemented on each local processor.At some point the design must be implemented on hardware. It is anticipated that bothstandard hardware such as microprocessors and memory management units will be requiredas well as special hardware to implement the clock synchronization and Byzantine agreementfunctions. In the same way that this work capitalized on the work done elsewhere in clocksynchronization, the LP speci�cation will build on the work being performed under contractto NASA Langley in hardware veri�cation.NASA Langley has awarded three contracts speci�cally devoted to formal methods (fromthe competitive NASA RFP 1-22-9130.0238). The selected contractors were SRI Interna-tional, Computational Logic Inc., and Odyssey Research Associates. Another task-assignmentcontract with Boeing Military Aircraft Company (BMAC) is being used to explore formalmethods as well. Through this contract BMAC is funding research at the University ofCalifornia at Davis and California Polytechnic State University to assist them in the use offormal methods in aerospace applications. The e�orts are roughly divided as follows:SRI: Clock synchronization, operating systemCLI: Byzantine Agreement Circuits, clock synchronizationORA: Byzantine Agreement Circuits, applicationsBMAC: Hardware Veri�cation, formal requirements analysisThe DA speci�cation critically depended upon a clock synchronization property. Previouswork by SRI had veri�ed that the ICA algorithm meets this property. Ongoing work at SRIis directed at implementing a synchronization algorithm in hardware verifying it. This willlead to the veri�cation hierarchy shown in �gure 13.Implicit in the RS, DS and DA models is the assumption that it is possible to distributesingle source information such as sensor data to the redundant processors in a consistent man-52

Maximum Clock Skew Property"jSynchronization Algorithm"jDigital Circuit ImplementationFigure 13: Clock Synchronization Hierarchyner even in the presence of faults. This is the classic Byzantine Generals problem [18].13 CLIis investigating the formal veri�cation of such algorithms and their implementation. Theyhave formally veri�ed the original Pease, Shostak, and Lamport version of this algorithmusing the Boyer Moore theorem prover [27]. They have also implemented this algorithmdown to the register-transfer level and demonstrated that it implements the mathematicalalgorithm [28]. Future work will concentrate on tying this work together with their veri�edmicroprocessor, the FM8502 [29].ORA has also been investigating the formal veri�cation of Byzantine Generals algorithms.They have focused on the practical implementation of a Byzantine-resilient communicationsmechanism between Mini-Cayuga micro-processors [30]. The Mini-Cayuga is a small butformally veri�ed microprocessor developed by ORA. It is a research prototype and has notbeen fabricated. This communications circuitry could serve as a foundation for the RCParchitecture. It was designed assuming that the underlying processors were synchronized(say by a clock synchronization circuit). The issues involved with connecting the Byzantinecommunications circuit with a clock synchronization circuit and verifying the combinationhave not yet been explored.Boeing Military Aircraft Company and U. C. Davis have been sponsored by NASA,Langley to apply formal methods to the design of conventional hardware devices. FormalVeri�cation of the following circuits is currently under investigation:� a
oating-point coprocessor similar to the Intel 8087 (but smaller) [31, 32].� a DMA controller similar to the Intel 8237A (but smaller) [33].� microprocessors in HOL (small) [34, 35, 36].� a memory management unit [37, 38].13Fault-tolerant systems, although internally redundant, must deal with single-source information fromthe external world. For example, a
ight control system is built around the notion of feedback from physicalsensors such as accelerometers, position sensors, pressure sensors, etc. Although these can be replicated(and they usually are), the replicates do not produce identical results. In order to use bit-by-bit majorityvoting all of the computational replicates must operate on identical input data. Thus, the sensor values (thecomplete redundant suite) must be distributed to each processor in a manner that guarantees all workingprocessors receive exactly the same value even in the presence of some faulty processors.53

The team is currently investigating the veri�cation of a composed set of veri�ed hardwaredevices [39, 40, 41]Researchers at NASA Langley have begun a new e�ort on a hardware clock synchro-nization technique that can serve as a foundation for the RCP architecture. The method,which is based on the Fault-Tolerant Midpoint algorithm [42], is aimed at a fully independenthardware implementation. The primary goals of this work are full mechanical veri�cation,transient fault recovery, and an initialization scheme that provides recovery from large tran-sient upsets.10.2 Task Scheduling and VotingThe Phase 1 report described a scheduling system that was based upon a deterministic table.In the models presented in this paper, this is no longer strictly required although such anapproach clearly �ts within the axioms presented in the US model. However, it is conceivablethat more sophisticated scheduling strategies could also be shown to conform.10.3 Actuator OutputsIt is important not only that the replicated outputs sent to the actuators (on separate wires)are identical but that they appear within some bounded time of each other. Although thisbound may not be very small, it is still incumbent upon the veri�cation activity that a boundbe mathematically established.10.4 Development of a Detailed Reliability ModelIn the Phase 1 paper, a simple reliability model of the RCP system was developed thatdemonstrated that the speed at which one must remove the e�ects of a transient fault isnot very critical. In other words,
ushing the e�ects of a transient fault over an extendedperiod of time did not signi�cantly decrease the reliability of the system as compared toextremely fast removal. In this model, a fault anywhere in the processor was su�cient torender the entire processor faulty. Clearly, in a fully developed RCP, there will be morethan one fault-isolation containment region per processor. The most likely arrangement is tohave a separate fault-containment region for the clocking system and one for the Byzantineagreement circuitry.11 Concluding RemarksIn this paper a hierarchical speci�cation of a reliable computing platform (RCP) has beendeveloped. The top level speci�cation is extremely general and should serve as a model formany fault-tolerant system designs. The successive re�nements in the lower levels of abstrac-tion introduce, �rst, processor replication and voting, second interprocess communication byuse of dedicated mailboxes and �nally, the asynchrony due to separate clocks in the system.54

Although the �rst phase of this work was accomplished without the use of an automatedtheorem prover, we found the use of the Ehdm system to be bene�cial to this second phaseof work for several reasons.� The amount of detail in the lower level models is signi�cantly greater than in the upperlevel models. It became extremely di�cult to keep up with everything using penciland paper.� The strictness of the Ehdm language (i.e. its requirement to precisely de�ne all vari-ables and functions, etc.) forced us to elaborate the design more carefully.� Most of the proofs were not very deep but had to deal with large amounts of detail.Without a mechanical proof checker, it would be far too easy to overlook a
aw in theproofs.� The proof support environment of Ehdm, although overly strict in some cases, providedmuch assistance in assuring us that our proof chains were complete and that we hadnot overlooked some unproven lemmas.� The decision procedures of Ehdm for linear arithmetic and propositional calculus werevaluable in that they relieved us of the need to reduce many formulas to primitiveaxioms of arithmetic. Especially useful was its ability to reason about inequalities.Key features of the work completed during Phase 2 and improvements over the resultsof Phase 1 include the following.� Speci�cation of redundancy management and the transient fault recovery scheme usesa very general model of fault-tolerant computing similar to one proposed by Rushby[20, 21].� Speci�cation of the asynchronous layer design uses modeling techniques based on atime-extended state machine approach. This method allows us to build on previouswork that formalized clock synchronization mechanisms and their properties.� Formulation of the RCP speci�cations is based on a straightforward Maximum FaultAssumption that provides a clean interface to the realm of probabilistic reliabilitymodels. It is only necessary to determine the probability of having a majority ofworking processors and a two-thirds majority of nonfaulty clocks.� A four-layer tier of speci�cations has been completely proved to the standards of rigorof the Ehdm mechanical proof system. All proofs can be run on a Sun SPARCstationin less than one hour.� Important constraints on lower level design and implementation constructs have beenidenti�ed and investigated.Based on the results obtained thus far, work will continue to a Phase 3 e�ort, whichwill concentrate on completing design formalizations and develop the techniques needed toproduce veri�ed implementations of RCP architectures.55

AcknowledgementsThe authors are grateful for the many helpful suggestions given by Dr. John Rushby of SRIInternational. His suggestions during the early phases of model formulation and decompo-sition lead to a signi�cantly more manageable proof activity. The authors are also gratefulto John and Sam Owre for the timely assistance given in the use of the Ehdm system. Thiswork was supported in part by NASA contract NAS1-19341.References[1] Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L., II: Formal Design andVeri�cation of a Reliable Computing Platform For Real-Time Control (Phase 1 Results).NASA Technical Memorandum 102716, Oct. 1990.[2] Di Vito, Ben L.; Butler, Ricky W.; and Caldwell, James L.: High Level Design Proofof a Reliable Computing Platform. In 2nd IFIP Working Conference on DependableComputing for Critical Applications, Tucson, AZ, Feb. 1991, pp. 124{136.[3] Butler, Ricky W.; Caldwell, James L.; and Di Vito, Ben L.: Design Rationale for aFormally Veri�ed Reliable Computing Platform. In 6th Annual Conference on ComputerAssurance (COMPASS 91), Gaithersburg, MD, June 1991.[4] von Henke, F. W.; Crow, J. S.; Lee, R.; Rushby, J. M.; and Whitehurst, R. A.: EhdmVeri�cation Environment: An Overview. In 11th National Computer Security Confer-ence, Baltimore, Maryland, 1988.[5] Computer Resource Management, Inc.: Chapter 14: High Energy Radio FrequencyFields. In Digital Systems Validation Handbook { volume II, no. DOT/FAA/CT-88/10,pp. 14.1{14.50. FAA, Feb. 1989.[6] Federal Aviation Administration. System Design Analysis, September 7, 1982. AdvisoryCircular 25.1309-1.[7] Butler, Ricky W.; and Finelli, George B.: The Infeasibility of Experimental Quanti�-cation of Life-Critical Software Reliability. In Proceedings of the ACM SIGSOFT '91Conference on Software for Critical Systems, New Orleans, Louisiana, Dec. 1991, pp.66{76.[8] Rushby, John; and von Henke, Friedrich: Formal Veri�cation of a Fault-Tolerant ClockSynchronization Algorithm. NASA Contractor Report 4239, June 1989.[9] Lamport, Leslie; and Melliar-Smith, P. M.: Synchronizing Clocks in the Presence ofFaults. Journal of the ACM, vol. 32, no. 1, Jan. 1985, pp. 52{78.[10] Siewiorek, Daniel P.; and Swarz, Robert S.: The Theory and Practice of Reliable SystemDesign. Digital Press, 1982. 56

[11] Goldberg, Jack; et al.: Development and Analysis of the Software Implemented Fault-Tolerance (SIFT) Computer. NASA Contractor Report 172146, 1984.[12] Hopkins, Albert L., Jr.; Smith, T. Basil, III; and Lala, Jaynarayan H.: FTMP | AHighly Reliable Fault-Tolerant Multiprocessor for Aircraft. Proceedings of the IEEE,vol. 66, no. 10, Oct. 1978, pp. 1221{1239.[13] Lala, Jaynarayan H.; Alger, L. S.; Gauthier, R. J.; and Dzwonczyk, M. J.: A Fault-Tolerant Processor to Meet Rigorous Failure Requirements. Charles Stark Draper Lab.,Inc., Technical Report CSDL-P-2705, July 1986.[14] Walter, C. J.; Kieckhafer, R. M.; and Finn, A. M.: MAFT: A Multicomputer Architec-ture for Fault-Tolerance in Real-Time Control Systems. In IEEE Real-Time SystemsSymposium, Dec. 1985.[15] Kopetz, H.; Damm, A.; Koza, C.; Mulazzani, M.; Schwabl, W.; Senft, C.; and Zain-linger, R.: Distributed Fault-tolerant Real-time Systems: The Mars Approach. IEEEMicro, vol. 9, Feb. 1989, pp. 25{40.[16] Moser, Louise; Melliar-Smith, Michael; and Schwartz, Richard: Design Veri�cation ofSIFT. NASA Contractor Report 4097, Sept. 1987.[17] Peer Review of a Formal Veri�cation/Design Proof Methodology. NASA ConferencePublication 2377, July 1983.[18] Lamport, Leslie; Shostak, Robert; and Pease, Marshall: The Byzantine Generals Prob-lem. ACM Transactions on Programming Languages and Systems, vol. 4, no. 3, July1982, pp. 382{401.[19] Mancini, L. V.; and Pappalardo, G.: Towards a Theory of Replicated Processing. InLecture Notes in Computer Science, vol. 331, pp. 175{192. Springer Verlag, 1988.[20] Rushby, John: Formal Speci�cation and Veri�cation of a Fault-Masking and Transient-Recovery Model for Digital Flight-Control Systems. NASA Contractor Report 4384, July1991.[21] Rushby, John: Formal Speci�cation and Veri�cation of a Fault-Masking and Transient-Recovery Model for Digital Flight-Control Systems. In Second International Symposiumon Formal Techniques in Real Time and Fault Tolerant Systems, vol. 571 of LectureNotes in Computer Science, pp. 237{258. Springer Verlag, Nijmegen, The Netherlands,Jan. 1992.[22] Shankar, Natarajan: Mechanical Veri�cation of a Schematic Byzantine Clock Synchro-nization Algorithm. NASA Contractor Report 4386, July 1991.[23] Shankar, Natarajan: Mechanical Veri�cation of a Generalized Protocol for ByzantineFault-Tolerant Clock Synchronization. In Second International Symposium on FormalTechniques in Real Time and Fault Tolerant Systems, vol. 571 of Lecture Notes in Com-puter Science, pp. 217{236. Springer Verlag, Nijmegen, The Netherlands, Jan. 1992.57

[24] Harel, D.; Lachover, H.; Naamad, A.; Pnueli, A.; Politi, M.; Sherman, R.; Shtull-Trauring, A.; and Trakhtenbrot, M.: STATEMATE: A Working Environment for theDevelopment of Complex Reactive Systems. IEEE Transactions on Software Engineer-ing, vol. 16, no. 4, Apr. 1990, pp. 403{414.[25] Clarke, E.M.; Emerson, E.A.; and Sistla, A.P.: Automatic Veri�cation of Finite-StateConcurrent Systems using Temporal Logic Speci�cations. ACM Transactions on Pro-gramming Languages and Systems, vol. 8, no. 2, Apr. 1986, pp. 244{263.[26] Miner, Paul S.; and Caldwell, James L.: A HOL Theory for Voting. In NASA FormalMethods Workshop 1990, NASA CP-10052, Nov. 1990, pp. 442{456.[27] Bevier, William R.; and Young, William D.: Machine Checked Proofs of the Design andImplementation of a Fault-Tolerant Circuit. NASA Contractor Report 182099, Nov.1990.[28] Bevier, William R.; and Young, William D.: The Proof of Correctness of a Fault-Tolerant Circuit Design. In Second IFIP Conference on Dependable Computing ForCritical Applications, Tucson, Arizona, Feb. 1991, pp. 107{114.[29] Hunt, Jr., Warren A.: Microprocessor Design Veri�cation. Journal of Automated Rea-soning, no. 4, 1989, pp. 429{260.[30] Srivas, Mandayam; and Bickford, Mark: Veri�cation of the FtCayuga Fault-TolerantMicroprocessor System (Volume 1: A Case Study in Theorem Prover-Based Veri�ca-tion). NASA Contractor Report 4381, July 1991.[31] Pan, Jing; Levitt, Karl; and Cohen, Gerald C.: Toward a Formal Veri�cation of aFloating-Point Coprocessor and its Composition with a Central Processing Unit. NASAContractor Report 187547, 1991.[32] Pan, Jing; and Levitt, Karl: Towards a Formal Speci�cation of the IEEE Floating-PointStandard with Application to the Veri�cation of Floating-Point Coprocessors. In 24thAsilomar Conference on Signals, Systems & Computers, Monterrey, CA., Nov. 1990.[33] Kalvala, Sara; Levitt, Karl; and Cohen, Gerald C.: Design and Veri�cation of a DMAProcessor. To be published as a NASA Contractor Report, 1991.[34] Windley, Phil J.; Levitt, Karl; and Cohen, Gerald C.: Formal Proof of the AVM-1Microprocessor Using the Concept of Generic Interpreters. NASA Contractor Report187491, Mar. 1991.[35] Windley, Phil J.; Levitt, Karl; and Cohen, Gerald C.: The Formal Veri�cation ofGeneric Interpreters. NASA Contractor Report 4403, Oct. 1991.[36] Windley, Phil J.: Abstract Hardware. In ACM International Workshop on FormalMethods in VLSI Design, Miami, FL, Jan. 1991.58

[37] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Formal Veri�cation of a Set ofMemory Management Units. NASA Contractor Report 189566, 1992.[38] Schubert, Thomas; and Levitt, Karl: Veri�cation of Memory Management Units. InSecond IFIP Conference on Dependable Computing For Critical Applications, Tucson,Arizona, Feb. 1991, pp. 115{123.[39] Schubert, Thomas; Levitt, Karl; and Cohen, Gerald C.: Towards Composition of Veri-�ed Hardware Devices. NASA Contractor Report 187504, 1991.[40] Pan, Jing; Levitt, Karl; and Schubert, E. Thomas: Toward a Formal Veri�cation ofa Floating-Point Coprocessor and its Composition with a Central Processing Unit. InACM International Workshop on Formal Methods in VLSI Design, Miami, FL, Jan.1991.[41] Kalvala, Sara; Archer, Myla; and Levitt, Karl: A Methodology for Integrating HardwareDesign and Veri�cation. In ACM International Workshop on Formal Methods in VLSIDesign, Miami, FL, Jan. 1991.[42] Welch, J. Lundelius; and Lynch, Nancy A.: A New Fault-tolerant Algorithm For ClockSynchronization. Information and Computation, vol. 77, no. 1, Apr. 1988, pp. 1{35.

59

IndexThe following index identi�es where eachsymbol or identi�er is introduced in themain body of the report. Multiple entriesappear for those names used in more thanone module in the Ehdm speci�cations.C(t) 33T 2 R(i) 33T (i) 33�(i�1)p 33�(i)qp 34� 34� 34�0 34� 34� 39� 33c(T) 33fk 19fs 15ft 19fv 15m 34rt(i)(T) 33rtp 33Nda 38N bda 40N cda 38N sda 40N vda 40Nds 26N bds 27N cds 27N sds 28N vds 28Nrs 15Nus 14A0 34Corr 33DA 9DAmap 42

DAstate 36DS 9DSmap 29DSstate 25ELT 44MB 13MBvec 13Pstate 13RS 8RSmap 22RSstate 15S1 34S1A 35S2 34Theorem 1 35Theorem 2 35US 8all durations 39allowable faults 16broadcast duration 39broadcast duration2 39broadcast received 27broadcast received 38cell 18cell recovered 20cell recovery 23cell state 18clock advanced 39com broadcast 2 44com broadcast 5 44components equal 20consensus prop 24control recovered 20control recovery 23control state 18da proc state 36da proc state 36da rt 36da rt lem 37dep 19dep agree 1960

dep recovery 20ds proc array 25ds proc state 25duration 39enough clocks 35enough hardware 38frame N ds 26frame commutes 22frame commutes 29frame time 33full recovery 20good clock 33good values sent 16initial Corr 33initial da 41initial ds 28initial maj cond 24initial maps 22initial maps 29initial maps 42initial recovery 20initial rs 17initial us 14inputs 13maj 22maj ax 22maj condition 16maj working 17nonfaulty clock 33nrep 13num good clocks 35outputs 13phase com X 43phase commutes 42phases 25pos durations 39processors exist ax 13reachable 22rec 19rec maj f c 24rs proc state 15ss update 29ss update 42state invariant 23

state rec inv 23state recovery 23succ 19succ ax 19sync thm 36sync time 34vote maj 20voted �nal state 16working majority 24working proc 17working set 17

61

A Appendix | LaTEX-printed Speci�cation Listings

62

B Appendix | LaTEX-printed Supplementary Speci�-cation Listings

108

C Appendix | Results of Proof Chain Analysis

115

